Skip to main content Accessibility help
×
Hostname: page-component-f554764f5-wjqwx Total loading time: 0 Render date: 2025-04-22T02:50:41.567Z Has data issue: false hasContentIssue false

7 - Periglacial Processes

from Part II - Connectivity in Process Domains

Published online by Cambridge University Press:  10 April 2025

Ronald Pöppl
Affiliation:
BOKU University Vienna
Anthony Parsons
Affiliation:
University of Sheffield
Saskia Keesstra
Affiliation:
Wageningen Universiteit, The Netherlands
Get access

Summary

Periglacial regions and processes are particularly affected by contemporary climate change. These changes modify sediment connectivity and flux significantly. Connectivity is dynamic, evolving in response to the sediment transport processes it itself induces; and connection and disconnection have to be viewed as relative and multi-variate concepts. For most of the time, a landscape is functionally disconnected; sediment does not move. When it does move, at more connected locations it is more likely to move further downstream. However, because such sediment flux (i.e., functional connectivity) may cause landscape changes that in turn change connection, this static structural representations of connectivity also need to be considered as non-stationary. We illustrate these points using examples from the Arolla and Ferpecle-Mont Miné Valleys, located in the Val d’Hérens of Canton Valais, in Switzerland. These examples: (1) illustrate the spatial variability of the functional connectivity; (2) show how structural connectivity interacts with the processes that drive sediment flux; and (3) demonstrate the ways in which sediment flux can lead to evolution of structural connectivity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Alley, R. B., Cuffey, K. M. & Zoet, L. K. (2019). Glacial erosion: Status and outlook. Annals of Glaciology 60 (80): 113. https://doi.org/10.1017/aog.2019.38.CrossRefGoogle Scholar
Alley, R. B., Cuffey, K. M., Evenson, E. B., Strasser, J. C., Lawson, D. E. & Larson, G. J. (1997). How glaciers entrain and transport basal sediment: Physical constraints. Quaternary Science Reviews 16 (9): 10171038. https://doi.org/10.1016/S0277-3791(97)00034-6.CrossRefGoogle Scholar
Anselmetti, F. S., Bühler, R., Finger, D., Girardclos, S., Lancini, A., Rellstab, C. & Sturm, M. (2007). Effects of Alpine hydropower dams on particle transport and lacustrine sedimentation. Aquatic Sciences 69 (2): 179198. https://doi.org/10.1007/s00027-007-0875-4.CrossRefGoogle Scholar
Antoniazza, G. & Lane, S. N. (2021). Sediment yield over glacial cycles: A conceptual model. Progress in Physical Geography: Earth and Environment, 45(6), 842865. https://doi.org/10.1177/0309133321997292.CrossRefGoogle Scholar
Arfstrom, J. D. (2003). Protalus ramparts and transverse ridge moraines on Mars: Indicators of surface ice depositional processes. In 34th Annual Lunar and Planetary Science Conference, March 17–21, 2003, League City, TX, abstract no.1050.Google Scholar
Ashmore, P. (1993). Contemporary erosion of the Canadian landscape. Progress in Physical Geography 17: 190204.CrossRefGoogle Scholar
Ashworth, P. J. & Ferguson, R. I. (1986). Interrelationships of channel processes, changes and sediments in a proglacial braided river. Geografiska Annaler: Series A, Physical Geography 68 (4): 361371. https://doi.org/10.1080/04353676.1986.11880186.CrossRefGoogle Scholar
Baewert, H. & Morche, D. (2014). Coarse sediment dynamics in a proglacial fluvial system (Fagge River, Tyrol). Geomorphology 218 (August): 8897. https://doi.org/10.1016/j.geomorph.2013.10.021.CrossRefGoogle Scholar
Bakker, M., Costa, A., Silva, T. A. Stutenbecker, L., Girarclos, S., Loizeau, J.-L., Molnar, P., Schlunegger, F. & Lane, S. N. (2018). Combined flow abstraction and climate change impacts on an aggrading Alpine river. Water Resources Research 54, 223242.CrossRefGoogle Scholar
Bakker, M., Antoniazza, G., Odermatt, E. & Lane, S. N. (2019). Morphological Response of an Alpine Braided Reach to Sediment‐Laden Flow Events. Journal of Geophysical Research: Earth Surface 124 (5): 13101328. https://doi.org/10.1029/2018JF004811.CrossRefGoogle Scholar
Ballantyne, C. K. (2002a). A General Model of Paraglacial Landscape Response. The Holocene 12 (3): 371376. https://doi.org/10.1191/0959683602hl553fa.CrossRefGoogle Scholar
Ballantyne, C. K. (2002b). Paraglacial Geomorphology. Quaternary Science Reviews 21 (18–19): 19352017. https://doi.org/10.1016/S0277-3791(02)00005-7.CrossRefGoogle Scholar
Ballantyne, C. K. & Benn, D. I. (1994). Paraglacial slope adjustment and resedimenfation following recent glacier retreat, Fåbergstølsdalen, Norway. Arctic and Alpine Research 26: 255269.CrossRefGoogle Scholar
Ballantyne, C. K. & Benn, D. I. (1996). Paraglacial slope adjustment during recent deglaciation and its implications for slope evolution in formerly glaciated environments. Anderson, M. G. and Brooks, S., Editors, Advances in Hillslope Processes 2: 11731195.Google Scholar
Ballantyne, Colin K. & Kirkbride, M. P. (1986). The characteristics and significance of some lateglacial protalus ramparts in upland Britain. Earth Surface Processes and Landforms 11 (6): 659671. https://doi.org/10.1002/esp.3290110609.CrossRefGoogle Scholar
Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L. I., Quincey, D., Thompson, S., Toumi, R. & Wiseman, S. (2012). Response of debris-covered glaciers in the mount everest region to recent warming, and implications for outburst flood hazards. Earth-Science Reviews 114 (1–2): 156174. https://doi.org/10.1016/j.earscirev.2012.03.008.CrossRefGoogle Scholar
Bertoldi, W., Zanoni, L. & Tubino, M. (2010). Assessment of morphological changes induced by flow and flood pulses in a gravel bed braided river: The Tagliamento River (Italy). Geomorphology 114 (3): 348360. https://doi.org/10.1016/j.geomorph.2009.07.017.CrossRefGoogle Scholar
Beylich, A. A., Laute, K., Liermann, S., Hansen, L., Burki, V., Vatne, G., Fredin, O., Gintz, D. & Berthling, I (2009). Subrecent sediment dynamics and sediment budget of the braided sandur system at Sandane, Erdalen (Nordfjord, Western Norway). Norsk Geografisk Tidsskrift – Norwegian Journal of Geography 63 (2): 123131. https://doi.org/10.1080/00291950902907934.CrossRefGoogle Scholar
Beylich, A. A., Laute, K. & Storms, J. E. A. (2017). Contemporary suspended sediment dynamics within two partly glacierized mountain drainage basins in western Norway (Erdalen and Bødalen, Inner Nordfjord). Geomorphology 287 (June): 126143. https://doi.org/10.1016/j.geomorph.2015.12.013.CrossRefGoogle Scholar
Blair, R. W. (1994). Moraine and valley wall collapse due to rapid deglaciation in mount cook national park, New Zealand. Mountain Research and Development 14 (4): 347. https://doi.org/10.2307/3673731.CrossRefGoogle Scholar
Bochet, E., Poesen, J. & Rubio, J. L. (2000). Mound development as an interaction of individual plants with soil, water erosion and sedimentation processes on slopes. Earth Surface Processes and Landforms 25: 847867.3.0.CO;2-Q>CrossRefGoogle Scholar
Bogen, J. (2010). Sediment dynamics of glacier-fed rivers. IAHS-AISH Publication, 181–188.Google Scholar
Borselli, L., Cassi, P., & Torri, D. (2008). Prolegomena to Sediment and Flow Connectivity in the Landscape: A GIS and Field Numerical Assessment. CATENA 75 (3): 268–77. https://doi.org/10.1016/j.catena.2008.07.006.CrossRefGoogle Scholar
Bosson, J.-B., Deline, P., Bodin, X., Schoeneich, P., Baron, L., Gardent, M. & Lambiel, C. (2015). The influence of ground ice distribution on geomorphic dynamics since the little ice age in proglacial areas of two cirque glacier systems: Influence of ground ice on geomorphic dynamics in proglacial areas. Earth Surface Processes and Landforms 40 (5): 666680. https://doi.org/10.1002/esp.3666.CrossRefGoogle Scholar
Bratlie, B. (1994). Senkvartære Sedimenter Og Glasialhistorie i Van Keulenfjorden, Svalbard. Master’s Thesis, Universitetet i Oslo, Norway.Google Scholar
Brönnimann, S., Rajczak, J., Fischer, E. M., Raible, C. C., Rohrer, M. & Schär, C. (2018). Changing seasonality of moderate and extreme precipitation events in the alps. Natural Hazards and Earth System Sciences 18 (7): 20472056. https://doi.org/10.5194/nhess-18-2047-2018.CrossRefGoogle Scholar
Brooks, G. R. (1994). The fluvial reworking of late Pleistocene drift, Squamish river drainage basin, southwestern British Colombia. Géographie Physique et Quaternaire 48 (1): 5168. https://doi.org/10.7202/032972ar.CrossRefGoogle Scholar
Cammeraat, L. H. & Imeson, A. C. (1999). The evolution and significance of soil-vegetation patterns following land abandonment and fire in Spain. CATENA 37: 107127.CrossRefGoogle Scholar
Carling, P. A. (2009). Morphology, sedimentology and palaeohydraulic significance of large gravel dunes, Altai Mountains, Siberia. Sedimentology 43 (4): 647664. https://doi.org/10.1111/j.1365-3091.1996.tb02184.x.CrossRefGoogle Scholar
Carling, P. A., Kirkbride, A. D., Parnachov, S., Borodavko, P. S. & Berger, G. W. (2002). Late quaternary catastrophic flooding in the Altai mountains of south–central Siberia: A synoptic overview and an introduction to flood deposit sedimentology. In Flood and Megaflood Processes and Deposits, edited by Martini, I. Peter, Baker, Victor R., and Garzn, Guillermina, 1735. Oxford, UK: Blackwell Publishing Ltd. https://doi.org/10.1002/9781444304299.ch2.CrossRefGoogle Scholar
Carrivick, J. L., Geilhausen, M., Warburton, J., Dickson, N. E., Carver, S. J., Evans, A. J. & Brown, L. E. (2013). Contemporary geomorphological activity throughout the proglacial area of an alpine catchment. Geomorphology 188 (April): 8395. https://doi.org/10.1016/j.geomorph.2012.03.029.CrossRefGoogle Scholar
Carrivick, J. L. & Heckmann, T. (2017). Short-term geomorphological evolution of proglacial systems. Geomorphology 287 (June): 328. https://doi.org/10.1016/j.geomorph.2017.01.037.CrossRefGoogle Scholar
Carrivick, J. L., Pringle, J. K., Russell, A. J. & Cassidy, N. J. (2007). GPR-derived sedimentary architecture and stratigraphy of outburst flood sedimentation within a bedrock valley system, Hraundalur, Iceland. Journal of Environmental and Engineering Geophysics 12 (1): 127143. https://doi.org/10.2113/JEEG12.1.127.CrossRefGoogle Scholar
Carrivick, J. L. & Rushmer, E. L. (2009). Inter- and intra-catchment variations in proglacial geomorphology: An example from Franz Josef Glacier and Fox Glacier, New Zealand. Arctic, Antarctic, and Alpine Research 41 (1): 1836. https://doi.org/10.1657/1523-0430-41.1.18.CrossRefGoogle Scholar
Carrivick, J. L. & Russel, A. J. (2013). Glaciofluvial landforms of deposition. In Elias, S. A. (ed.), The Encyclopedia of Quaternary Science. Amsterdam: Elsevier, 2: 617.CrossRefGoogle Scholar
Carrivick, J. L., Russell, A. J., Tweed, F. S. & Twigg, D. (2004). Palaeohydrology and sedimentary impacts of Jökulhlaups from Kverkfjöll, Iceland. Sedimentary Geology 172 (1–2): 1940. https://doi.org/10.1016/j.sedgeo.2004.07.005.CrossRefGoogle Scholar
Carrivick, J. L. & Tweed, F. S. (2013). Proglacial lakes: Character, behaviour and geological importance. Quaternary Science Reviews 78 (October): 3452. https://doi.org/10.1016/j.quascirev.2013.07.028.CrossRefGoogle Scholar
Cavalli, M., Trevisani, S., Comiti, F. & Marchi, L. (2013). Geomorphometric assessment of spatial sediment connectivity in small alpine catchments. Geomorphology 188 (April): 3141. https://doi.org/10.1016/j.geomorph.2012.05.007.CrossRefGoogle Scholar
Chiarle, M., Iannotti, S., Mortara, G. & Deline, P. (2007). Recent debris flow occurrences associated with glaciers in the Alps. Global and Planetary Change 56 (1–2): 123136. https://doi.org/10.1016/j.gloplacha.2006.07.003.CrossRefGoogle Scholar
Chiu, Y.-F., Tfwala, S. S., Hsu, Y.-C., Chiu, Y.‐Y., Lee, C.‐Y. & Chen, S.‐C. (2021). Upstream morphological effects of a sequential check dam adjustment process. Earth Surface Processes and Landforms 46 (13): 25272539. https://doi.org/10.1002/esp.5178.CrossRefGoogle Scholar
Church, M. & Ryder, J. M. (1972). Paraglacial sedimentation: A consideration of fluvial processes conditioned by glaciation. Geological Society of America Bulletin 83 (10): 3059. https://doi.org/10.1130/0016-7606(1972)83[3059:PSACOF]2.0.CO;2.CrossRefGoogle Scholar
Church, M. & Slaymaker, O. (1989). Disequilibrium of holocene sediment yield in glaciated British Columbia. Nature 337 (6206): 452454. https://doi.org/10.1038/337452a0.CrossRefGoogle Scholar
Clague, J. (2000). A Review of Catastrophic Drainage of Moraine-Dammed Lakes in British Columbia. Quaternary Science Reviews 19 (17–18): 17631783. https://doi.org/10.1016/S0277-3791(00)00090-1.CrossRefGoogle Scholar
Cossart, É. (2008). Landform Connectivity and Waves of Negative Feedbacks during the Paraglacial Period, a Case Study: The Tabuc Subcatchment since the End of the Little Ice Age (Massif Des Écrins, France). Géomorphologie: Relief, Processus, Environnement 14 (4): 249260. https://doi.org/10.4000/geomorphologie.7430.CrossRefGoogle Scholar
Cossart, E. & Fort, M. (2008). Sediment release and storage in early deglaciated areas: Towards an application of the exhaustion model from the case of Massif Des Écrins (French Alps) since the Little Ice Age. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography 62 (2): 115131. https://doi.org/10.1080/00291950802095145.CrossRefGoogle Scholar
Cossart, É. & Fressard, M. (2017). Assessment of structural sediment connectivity within catchments: Insights from graph theory. Earth Surface Dynamics 5 (2): 253268. https://doi.org/10.5194/esurf-5-253-2017.CrossRefGoogle Scholar
Cossart, É., Viel, V., Lissak, C., Reulier, R., Fressard, M. & Delahaye, D. (2018). How might sediment connectivity change in space and time? Land Degradation & Development 29 (8): 25952613. https://doi.org/10.1002/ldr.3022.CrossRefGoogle Scholar
Costa, A., Anghileri, D. & Molnar, P. (2018). Hydroclimatic control on suspended sediment dynamics of a regulated alpine catchment: A conceptual approach. Hydrology and Earth System Sciences 22 (6): 34213434. https://doi.org/10.5194/hess-22-3421-2018.CrossRefGoogle Scholar
Costa, A., Molnar, P., Stutenbecker, L., Bakker, M., Silva, T. A., Schlunegger, F., Lane, S. N., Loizeau, J.-L. & Girardclos, S. (2018). Temperature signal in suspended sediment export from an alpine catchment. Hydrology and Earth System Sciences 22 (1): 509528. https://doi.org/10.5194/hess-22-509-2018.CrossRefGoogle Scholar
Coulthard, T. J. & Van de Wiel, M. J. (2013). Climate, tectonics or morphology: What signals can we see in drainage basin sediment yields? Earth Surface Dynamics 1 (1): 1327. https://doi.org/10.5194/esurf-1-13-2013.CrossRefGoogle Scholar
Cruden, D. M. & Hu, X. Q. (1993). Exhaustion and steady state models for predicting landslide hazards in the canadian rocky mountains. Geomorphology 8 (4): 279285. https://doi.org/10.1016/0169-555X(93)90024-V.CrossRefGoogle Scholar
Curry, A. M., Cleasby, V. & Zukowskyj, P. (2006). Paraglacial response of steep, sediment-mantled slopes to post-“Little Ice Age” glacier recession in the central Swiss Alps. Journal of Quaternary Science 21 (3): 211225. https://doi.org/10.1002/jqs.954.CrossRefGoogle Scholar
Curry, A. M., Sands, T. B. & Porter, P. R. (2009). Geotechnical Controls on a Steep Lateral Moraine Undergoing Paraglacial Slope Adjustment. Geological Society, London, Special Publications 320 (1): 181197. https://doi.org/10.1144/SP320.12.CrossRefGoogle Scholar
Dabney, S.M, Liu, Z., Lane, M., Douglas, J., Zhu, J. & Flanagan, D. C. (1999). Landscape benching from tillage erosion between grass hedges1 paper presented at international symposium on tillage translocation and tillage erosion held in conjunction with the 52nd annual conference of the soil and water conservation society, Toronto, Canada, 24–25 July 1997.1. Soil and Tillage Research 51 (3–4): 219231. https://doi.org/10.1016/S0167-1987(99)00039-2.CrossRefGoogle Scholar
Delaloye, R. & Morard, S. (2019). Géomorphologie Périglaciaire. Géographie Dép. Géosciences, Université de Fribourg – GG.02262–263.Google Scholar
Delaloye, R., Strozzi, T., Lambiel, C., Perruchoud, E. & Raetzo, H. (2007). Landslide-like development of rockglaciers detected with ERS-1/2 SAR Interfero-Metry. Presented at the Proceedings of the Frascati, Italy, FRINGE 2007 Work-shop, 26–30 November 2007 (ESA SP-649, February 2008).Google Scholar
Delmas, M., Calvet, M. & Gunnell, Y. (2009). Variability of quaternary glacial erosion rates – a global perspective with special reference to the eastern Pyrenees. Quaternary Science Reviews 28 (5–6): 484498. https://doi.org/10.1016/j.quascirev.2008.11.006.CrossRefGoogle Scholar
Desloges, J. R. (1994). Varve deposition and sediment yield record at three small lakes of the southern Canadian Cordillera. Arctic and Alpine Research 26: 130140.CrossRefGoogle Scholar
Dirszowsky, R. W. & Desloges, J. R. (1997). Glaciolacustrine sediments and neoglacial history of the Chephren Lake Basin, Banff National Park, Alberta. Geographie Physique et Quaternaire 51: 4153.CrossRefGoogle Scholar
Draut, A. E., Logan, J. B. & Mastin, M. C., (2011). Channel evolution on the dammed Elwha River, Washington, USA. Geomorphology, 127, 7187CrossRefGoogle Scholar
Dunne, T. & Leopold, L. B. (1978). Water in Environmental Planning. San Francisco. CA: W. H. Freeman and Co., 818. https://doi.org/10.1002/esp.3290040322.CrossRefGoogle Scholar
Evans, D. J. A., Hiemstra, J. F., Boston, C. M., Leighton, I., Cofaigh, C. Ó. & Rea, B. R. (2012). Till stratigraphy and sedimentology at the margins of terrestrially terminating ice streams: Case study of the western Canadian prairies and high plains. Quaternary Science Reviews 46 (July): 80125. https://doi.org/10.1016/j.quascirev.2012.04.028.CrossRefGoogle Scholar
Fatichi, S., Rimkus, S., Burlando, P., Bordoy, R. & Molnar, P. (2015). High-resolution distributed analysis of climate and anthropogenic changes on the hydrology of an alpine catchment. Journal of Hydrology 525 (June): 362382. https://doi.org/10.1016/j.jhydrol.2015.03.036.CrossRefGoogle Scholar
French, H. (2015). Periglacial Environments. Oxford University Press. https://doi.org/10.1093/obo/9780199363445-0038.CrossRefGoogle Scholar
Gabbud, C., Robinson, C. & Lane, S. N., (2019). Summer is in winter: disturbance-driven shifts in macroinvertebrate communities following hydroelectric power exploitation. Science of the Total Environment, 650, 21642180.CrossRefGoogle ScholarPubMed
Gabbud, C. & Lane, S. N. (2016). Ecosystem impacts of alpine water intakes for hydropower: The challenge of sediment management. WIREs Water 3 (1): 4161. https://doi.org/10.1002/wat2.1124.CrossRefGoogle Scholar
Galay, V. J. (1983). Causes of river bed degradation. Water Resources Research, 19(5), 10571090.CrossRefGoogle Scholar
Gärtner-Roer, I. & Bast, A. (2019). (Ground) ice in the proglacial zone. In Heckmann, Tobias & Morche, David (eds.), Geomorphology of Proglacial Systems. 8598. Cham: Springer International Publishing, https://doi.org/10.1007/978-3-319-94184-4_6.CrossRefGoogle Scholar
Geilhausen, M., Otto, J.-C., Morche, D. & Schrott, L. (2012). Decadal sediment yield from an alpine proglacial zone inferred from reservoir sedimentation (Pasterze, Hohe Tauern, Austria). In Erosion and Sediment Yields in the Changing Environment, 161172.Google Scholar
Gobiet, A. & Kotlarski, S. (2020). Future Climate Change in the European Alps. Oxford Research Encyclopedia of Climate Science, Oxford University Press. https://doi.org/10.1093/acrefore/9780190228620.013.767.CrossRefGoogle Scholar
Gurnell, A. M. (1983). Downstream channel adjustments in response to water abstraction for hydro-electric power generation from alpine glacial melt-water streams. The Geographical Journal 149 (3): 342. https://doi.org/10.2307/634009.CrossRefGoogle Scholar
Haeberli, W., Schaub, Y. & Huggel, C. (2017). Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology 293 (September): 405417. https://doi.org/10.1016/j.geomorph.2016.02.009.CrossRefGoogle Scholar
Harbor, J. & Warburton, J. (1993). Relative rates of glacial and nonglacial erosion in alpine environments. Arctic and Alpine Research 25 (1): 1-7. https://doi.org/10.2307/1551473.CrossRefGoogle Scholar
Harvey, A M. (2001). Coupling between Hillslopes and Channels in Upland Fluvial Systems: Implications for Landscape Sensitivity, Illustrated from the Howgill Fells, Northwest England, 26.CrossRefGoogle Scholar
Heckmann, T., Cavalli, M. & Marchi, L. (2019). Sediment Connectivity in Proglacial Areas. In Heckmann, T. & Morche, D. (eds) Geomorphology of Proglacial Systems – Landform and Sediment Dynamics in Recently Deglaciated Alpine Landscapes, 271–87. (Geography of the Physical Environment), Cham, Schweiz: Springer.CrossRefGoogle Scholar
Heckmann, T. & Morche, D. (2019). Geomorphology of proglacial systems: landform and sediment dynamics in recently deglaciated alpine landscapes. In Heckmann, T. & Morche, D. (eds.), Geography of the Physical Environment. Cham: Springer International Publishing, https://doi.org/10.1007/978-3-319-94184-4.Google Scholar
Heckmann, T. & Schwanghart, W. (2013). Geomorphic Coupling and Sediment Connectivity in an Alpine Catchment – Exploring Sediment Cascades Using Graph Theory, 15.CrossRefGoogle Scholar
Hedding, D. W. (2011). Pronival rampart and protalus rampart: A review of terminology. Journal of Glaciology 57 (206): 11791180. https://doi.org/10.3189/002214311798843241.CrossRefGoogle Scholar
Hirschberg, J., Fatichi, S., Bennett, G. L., McArdell, B. W., Peleg, N., Lane, S. N., Schlunegger, F. & Molnar, P. (2021). Climate change impacts on sediment yield and debris‐flow activity in an alpine catchment. Journal of Geophysical Research: Earth Surface 126 (1). https://doi.org/10.1029/2020JF005739.Google Scholar
Hugenholtz, C. H., Moorman, B. J., Barlow, J. & Wainstein, P. A. (2008). Large-scale moraine deformation at the Athabasca glacier, Jasper National Park, Alberta, Canada. Landslides 5 (3): 251260. https://doi.org/10.1007/s10346-008-0116-5.CrossRefGoogle Scholar
Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague, J. J., Vuille, M. & al. (2017). Toward mountains without permanent snow and ice: Mountains without permanent snow and ice. Earth’s Future 5 (5): 418435. https://doi.org/10.1002/2016EF000514.CrossRefGoogle Scholar
Huss, M. & Hock, R. (2018). Global-scale hydrological response to future glacier mass loss. Nature Climate Change 8 (2): 135140. https://doi.org/10.1038/s41558-017-0049-x.CrossRefGoogle Scholar
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (Eds.)]. Cambridge University Press. In Press.Google Scholar
Jackson, L. E., MacDonald, G. M. & Wilson, M. C. (1982). Paraglacial origin for terraced river sediments in bow valley, Alberta. Canadian Journal of Earth Sciences 19 (12): 22192231. https://doi.org/10.1139/e82-196.CrossRefGoogle Scholar
Kenner, R., Phillips, M., Limpach, P., Beutel, J., & Hiller, M. (2018). Monitoring mass movements using georeferenced time-lapse photography_ Ritigraben Rock Glacier, Western Swiss Alps. Cold Regions Science and Technology, 145, 127134. https://doi.org/10.1016/j.coldregions.2017.10.018.CrossRefGoogle Scholar
Kondolf, G. M. & Swanson, M. L. (1993). Channel adjustments to reservoir construction and instream gravel mining, Stony Creek, California. Environmental Geology and Water Science, 21, 256269.CrossRefGoogle Scholar
Koppes, M. N. & Montgomery, D. R. (2009). The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales. Nature Geoscience 2 (9): 644647. https://doi.org/10.1038/ngeo616.CrossRefGoogle Scholar
Kroes, D. E. & Hupp, C. R. (2010). The effect of channelization on floodplain sediment deposition and subsidence along the Pocomoke River, Maryland. Journal of the American Water Resources Association, 46 686699CrossRefGoogle Scholar
Kummert, M. & Delaloye, R. (2018). Mapping and quantifying sediment transfer between the front of rapidly moving rock glaciers and torrential gullies. Geomorphology 309 (May): 6076. https://doi.org/10.1016/j.geomorph.2018.02.021.CrossRefGoogle Scholar
Kummert, M., Delaloye, R. & Braillard, L. (2018). Erosion and sediment transfer processes at the front of rapidly moving rock glaciers: Systematic observations with automatic cameras in the western Swiss Alps. Permafrost and Periglacial Processes 29 (1): 2133. https://doi.org/10.1002/ppp.1960.CrossRefGoogle Scholar
Lambiel, C., Delaloye, R., Strozzi, T., Lugon, R. & Raetzo, R. (2008). ERS InSAR for Detecting the Rock Glacier Activity. Presented at the Kane, D. L. & K. M. Hinkel (eds), Proceedings of the 9th International Conference on Permafrost, June 29–July 3, 2008, Fairbanks, Alaska 2: 1019–1024.Google Scholar
Lane, S., Bakker, M., Balin, D., Lovis, B. & Regamey, B. (2014). Climate and Human Forcing of Alpine River Flow. In Schleiss, Anton, de Cesare, Giovanni, Franca, Mario, & Pfister, Michael (eds.), River Flow 2014, 715. CRC Press, Lausanne. https://doi.org/10.1201/b17133-5.CrossRefGoogle Scholar
Lane, S. N., Bakker, M., Costa, A., Girardclos, S., Loizeau, J.-L., Molnar, P., Silva, T., Stutenbecker, L. & Schlunegger, F. (2019). Making stratigraphy in the Anthropocene: Climate change impacts and economic conditions controlling the supply of sediment to Lake Geneva. Scientific Reports 9 (1): 8904. https://doi.org/10.1038/s41598-019-44914-9.CrossRefGoogle ScholarPubMed
Lane, S. N., Gaillet, T. & Goldenschue, L. (2022). Restoring morphodynamics downstream from Alpine dams: development of a geomorphological version of the serial discontinuity concept. Geomorphology, 402. https://doi.org/10.1016/j.geomorph.2022.108131.CrossRefGoogle Scholar
Lane, S. N. & Nienow, P. W. (2019). Decadal-scale climate forcing of alpine glacial hydrological systems. Water Resources Research, 55: 24782492. https://doi.org/10.1029/2018WR024206.CrossRefGoogle Scholar
Lane, S. N., Richards, K. S. & Chandler, J. H. (1996). Discharge and sediment supply controls on erosion and deposition in a dynamic alluvial channel. Geomorphology 1C5 (1): 115. https://doi.org/10.1016/0169-555X(95)00113-J.CrossRefGoogle Scholar
Lane, S. N., Bakker, M. Gabbud, C., Micheletti, N. & Saugy, J.-N. (2017). Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and alpine glacier recession. Geomorphology 277 (January): 210227. https://doi.org/10.1016/j.geomorph.2016.02.015.CrossRefGoogle Scholar
Lee, K.-H., Isenhart, T. M., Schultz, R. C. & Mickelson, S. K. (2000). Multispecies riparian buffers trap sediment and nutrients during rainfall simulations. Journal of Environmental Quality 29 (4): 12001205. https://doi.org/10.2134/jeq2000.00472425002900040025x.CrossRefGoogle Scholar
Leonard, E. M. (1985). Glaciological and climatic controls on lake sedimentation, canadian rocky mountains. Zeitschrift Fur. Gletscherkunde Und Glazialgeologie 21: 3542.Google Scholar
Liermann, S., Beylich, A. A. & Welden, A. (2012). Contemporary suspended sediment transfer and accumulation processes in the small proglacial Sætrevatnetsub-catchment, Bødalen, western Norway. Geomorphology, 167: 91101.CrossRefGoogle Scholar
Livingstone, S. J., Clark, C. D., Piotrowski, J. A., Tranter, M., Bentley, M. J., Hodson, A., Swift, D. A. & Woodward, J. (2012). Theoretical framework and diagnostic criteria for the identification of Palaeo-subglacial lakes. Quaternary Science Reviews 53 (October): 88110. https://doi.org/10.1016/j.quascirev.2012.08.010.CrossRefGoogle Scholar
Łozinzki, W. von. (1909). Über Die Mechanische Verwitterung Der Sandsteine Im Gemässigten Klima. Bulletin International de l’Academie Des Sciences de Cracovie, 1: 125. Classe des Sciences Mathematiques et Naturelles.Google Scholar
Lugon, R. (2010). Rock-glacier dynamics and magnitude–frequency relations of debris flows in a high-elevation watershed: Ritigraben, Swiss Alps. Global and Planetary Change, 73 (3–4): 202210, ISSN 0921-8181, https://doi.org/10.1016/j.gloplacha.2010.06.004.CrossRefGoogle Scholar
Mahoney, D. T., Fox, J. F. & Al Aamery, N. (2018). Watershed erosion modeling using the probability of sediment connectivity in a gently rolling system. Journal of Hydrology 561 (June): 862883. https://doi.org/10.1016/j.jhydrol.2018.04.034.CrossRefGoogle Scholar
Mancini, D. & Lane, S. N. (2020). Changes in sediment connectivity following glacial debuttressing in an alpine valley system. Geomorphology 352 (March): 106987. https://doi.org/10.1016/j.geomorph.2019.106987.CrossRefGoogle Scholar
Marren, P. M. (2005). Magnitude and frequency in proglacial rivers: A geomorphological and sedimentological perspective. Earth-Science Reviews 70 (3–4): 203251. https://doi.org/10.1016/j.earscirev.2004.12.002.CrossRefGoogle Scholar
Marren, P. M. & Toomath, S. C. (2014). Channel pattern of proglacial rivers: Topographic forcing due to glacier retreat: Channel pattern of proglacial rivers. Earth Surface Processes and Landforms 39 (7): 943951. https://doi.org/10.1002/esp.3545.CrossRefGoogle Scholar
Mattson, L. E. & Gardner, J. S. (1991). Mass wasting on valley-side ice-cored moraines, boundary glacier, Alberta, Canada. Geografiska Annaler: Series A, Physical Geography 73 (3–4): 123128. https://doi.org/10.1080/04353676.1991.11880337.CrossRefGoogle Scholar
Meyer, L. D., Dabney, S. M. & Harmon, W. C. (1995). Sediment-trapping effectiveness of stiff-grass hedges. Transactions of the ASAE 38 (3): 809815. https://doi.org/10.13031/2013.27895.CrossRefGoogle Scholar
Meyrat, R. (2018). L’utilisation de la photogrammétrie Structure from Motion pour le suivi des glaciers rocheux. (mémoire de license non publié). Université de Lausanne, Faculté des géosciences et de l’environnement, Suisse.Google Scholar
Micheletti, N., Lambiel, C. & Lane, S. N. (2015). Investigating decadal‐scale geomorphic dynamics in an Alpine mountain setting. Journal of Geophysical Research: Earth Surface 120 (10): 21552175. https://doi.org/10.1002/2015JF003656.CrossRefGoogle Scholar
Micheletti, N. & Lane, S. N. (2016). Water yield and sediment export in small, partially glaciated Alpine watersheds in a warming climate: Climate change control in small Alpine watersheds. Water Resources Research 52 (6): 49244943. https://doi.org/10.1002/2016WR018774.CrossRefGoogle Scholar
Milan, D. J. (2012). Geomorphic impact and system recovery following an extreme flood in an upland stream: Thinhope Burn, Northern England, UK. Geomorphology 138 (1): 319328. https://doi.org/10.1016/j.geomorph.2011.09.017.CrossRefGoogle Scholar
Miller, H. R. & Lane, S. N. (2019). Biogeomorphic feedbacks and the ecosystem engineering of recently deglaciated terrain. Progress in Physical Geography: Earth and Environment 43 (1): 2445. https://doi.org/10.1177/0309133318816536.CrossRefGoogle Scholar
Orwin, J. F. & Smart, C. C. (2004). Short-term spatial and temporal patterns of suspended sediment transfer in proglacial channels, small river glacier, Canada. Hydrological Processes 18 (9): 15211542. https://doi.org/10.1002/hyp.1402.CrossRefGoogle Scholar
Otto, J.-C. (2019). Proglacial lakes in high mountain environments. In Heckmann, Tobias & Morche, David (eds.), Geomorphology of Proglacial Systems. Cham: Springer International Publishing, 231247. https://doi.org/10.1007/978-3-319-94184-4_14.CrossRefGoogle Scholar
Petts, G. E. & Bickerton, M. A. (1994). Influence of water abstraction on the macroinvertebrate community gradient within a glacial stream system: La Borgne d’Arolla, Valais, Switzerland. Freshwater Biology 32 (2): 375386. https://doi.org/10.1111/j.1365-2427.1994.tb01133.x.CrossRefGoogle Scholar
Perolo, P., Bakker, M., Gabbud, C., Moradi, G., Rennie, C. & Lane, S. N. (2019). Subglacial sediment production and snout marginal ice uplift during the late ablation season of a temperate valley glacier. Earth Surface Processes and Landforms, 44, 1117-1136.CrossRefGoogle Scholar
Piton, G., Simon, C., Recking, A., Tacnet, J. M., Liébault, F., Kuss, D., Quefféléan, Y. & Marco, O. (2017). Why do we build check dams in alpine streams? an historical perspective from the French experience: A review of the subtle knowledge of 19th century torrent-control-engineers. Earth Surface Processes and Landforms 42 (1): 91108. https://doi.org/10.1002/esp.3967.CrossRefGoogle Scholar
Porter, P. R., Smart, M. J. & Irvine-Fynn, T. D. L. (2019). Glacial sediment stores and their reworking. In Heckmann, Tobias & Morche, David, (eds.), Geomorphology of Proglacial Systems. Cham: Springer International Publishing, 157176. https://link.springer.com/chapter/10.1007/978-3-319-94184-4_10.CrossRefGoogle Scholar
Rainato, R., Picco, L., Cavalli, M., Mao, L., Neverman, A. J. & Tarolli, P. (2018). Coupling climate conditions, sediment sources and sediment transport in an Alpine basin: Climate, sediment sources and sediment transport in an Alpine basin. Land Degradation & Development 29 (4): 11541166. https://doi.org/10.1002/ldr.2813.CrossRefGoogle Scholar
Ravanel, L. & Deline, P. (2011). Climate influence on rockfalls in high-Alpine steep Rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the “Little Ice Age”. The Holocene 21 (2): 357365. https://doi.org/10.1177/0959683610374887.CrossRefGoogle Scholar
Rebetez, M., Lugon, R. & Baeriswyl, P.-A. (1997). Climatic change and debris flows in high mountain regions: The case study of the Ritigraben Torrent (Swiss Alps). In Diaz, Henry F., Beniston, Martin, & Bradley, Raymond S., (eds.), Climatic Change at High Elevation Sites. Dordrecht: Springer, 139157. https://doi.org/10.1007/978-94-015-8905-5_8.CrossRefGoogle Scholar
Renshaw, C. E., Abengoza, K., Magilligan, F. J., Dade, W. B. & Landis, J. D. (2014). Impact of flow regulation on near-channel floodplain sedimentation. Geomorphology, 205, 120127.CrossRefGoogle Scholar
Rey, F. (2004). Effectiveness of vegetation barriers for Marly sediment trapping. Earth Surface Processes and Landforms 29 (9): 11611169. https://doi.org/10.1002/esp.1108.CrossRefGoogle Scholar
Schmidli, J. & Frei, C. (2005). Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century. International Journal of Climatology 25 (6): 753771. https://doi.org/10.1002/joc.1179.CrossRefGoogle Scholar
Schmidli, J., Schmutz, C., Frei, C., Wanner, H. & Schär, C. (2002). Mesoscale precipitation variability in the region of the European Alps during the 20th century: Alpine precipitation variability. International Journal of Climatology 22 (9): 10491074. https://doi.org/10.1002/joc.769.CrossRefGoogle Scholar
Schomacker, A. & Kjaer, K. H. (2008). Quantification of dead-ice melting in ice-cored moraines at the high-arctic glacier Holmstr Mbreen, Svalbard. In Boreas 37:211225.CrossRefGoogle Scholar
Schrott, L., Götz, J., Geilhausen, M. & Morche, D. (2006). Spatial and temporal variability of sediment transfer and storage in an Alpine basin (Reintal Valley, Bavarian Alps, Gemany). Geographica Helvetica 61 (3): 191200. https://doi.org/10.5194/gh-61-191-2006.CrossRefGoogle Scholar
Shakesby, R. A. (2004). Protalus ramparts. In Encyclopedia of Geomorphology 1: 813814.Google Scholar
Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S., Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S. & Strattman, K. (2020). Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change 10 (10): 939945. https://doi.org/10.1038/s41558-020-0855-4.CrossRefGoogle Scholar
Sloan, J., Miller, J. R. & Lancaster, N. (2001). Response and recovery of the Eel River, California, and its tributaries to floods in 1955, 1964, and 1997. Geomorphology 36 (3–4): 129154. https://doi.org/10.1016/S0169-555X(00)00037-4.CrossRefGoogle Scholar
Smith, V. B. & Mohrig, D. (2017). Geomorphic signature of a dammed Sandy River: The lower trinity river downstream of Livingston dam in Texas, USA. Geomorphology, 297, 122136CrossRefGoogle Scholar
Sorg, A., Mosello, B., Shalpykova, G., Allan, A., Clarvis, M. H. & Stoffel, M. (2014). Coping with changing water resources: The case of the Syr Darya river basin in Central Asia. Environmental Science & Policy 43 (November): 6877. https://doi.org/10.1016/j.envsci.2013.11.003.CrossRefGoogle Scholar
Stahl, K., Moore, R. D., Shea, J. M., Hutchinson, D. & Cannon, A. J. (2008). Coupled modelling of glacier and streamflow response to future climate scenarios: modelling of glacier and streamflow. Water Resources Research 44 (2): 1-13. https://doi.org/10.1029/2007WR005956.CrossRefGoogle Scholar
Stoffel, M. & Huggel, C. (2012). Effects of climate change on mass movements in mountain environments. Progress in Physical Geography: Earth and Environment 36 (3): 421439. https://doi.org/10.1177/0309133312441010.CrossRefGoogle Scholar
Stoffel, M., Mendlik, T., Schneuwly-Bollschweiler, M. & Gobiet, A. (2014). Possible impacts of climate change on debris-flow activity in the Swiss Alps. Climatic Change 122 (1–2): 141155. https://doi.org/10.1007/s10584-013-0993-z.CrossRefGoogle Scholar
Stott, T. & Mount, N. (2007). Alpine proglacial suspended sediment dynamics in warm and cool ablation seasons: implications for global warming. Journal of Hydrology 332 (3–4): 259270. https://doi.org/10.1016/j.jhydrol.2006.07.001.CrossRefGoogle Scholar
Sturm, M. (1986). Formation of a strandline during the 1984 Jokulhlaup of strandline lake. Artic 39: 267269.Google Scholar
Stutenbecker, L., Delunel, R., Schlunegger, F., Silva, T.A., Šegvić, B., Girardclos, S. Bakker, M. & et al. (2018). Reduced sediment supply in a fast eroding landscape? A multi-proxy sediment budget of the Upper Rhône Basin, Central Alps. Sedimentary Geology 375 (November): 105–19. https://doi.org/10.1016/j.sedgeo.2017.12.013.CrossRefGoogle Scholar
Surian, N., Righini, M., Lucía, A., Nardi, L., Amponsah, W., Benvenuti, M., Borga, M. & al. (2016). Channel response to extreme floods: insights on controlling factors from six mountain rivers in northern Apennines, Italy. Geomorphology 272 (November): 7891. https://doi.org/10.1016/j.geomorph.2016.02.002.CrossRefGoogle Scholar
Swift, D. A., Nienow, P. W. & Hoey, T. B. (2005). Basal sediment evacuation by subglacial meltwater: Suspended sediment transport from Haut Glacier d’Arolla, Switzerland. Earth Surface Processes and Landforms 30 (7): 867883. https://doi.org/10.1002/esp.1197.CrossRefGoogle Scholar
Swisstopo, Office fédérale de topographie, ed. (2004). DHM25: The Digital Height Model of Switzerland.Google Scholar
Syverson, K. M. (1998). Sediment record of short-lived ice-contact lakes, Burroughs glacier, Alaska. In Boreas 27:4454.CrossRefGoogle Scholar
Syvitski, J. P. M. & Milliman, J. D. (2007). Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. The Journal of Geology 115 (1): 119. https://doi.org/10.1086/509246.CrossRefGoogle Scholar
Vörösmarty, C. J, Meybeck, M., Fekete, B., Sharma, K., Green, P. & Syvitski, J. P. M. (2003). Anthropogenic sediment retention: Major global impact from registered river impoundments. Global and Planetary Change 39 (1–2): 169190. https://doi.org/10.1016/S0921-8181(03)00023-7.CrossRefGoogle Scholar
Warburton, J. (1990). An Alpine proglacial fluvial sediment budget. Geografiska Annaler: Series A, Physical Geography 72 (3–4): 261272. https://doi.org/10.1080/04353676.1990.11880322.CrossRefGoogle Scholar
Weber, M., Braun, L., Mauser, W. & Prasch, M. (2010). Contribution of rain, snow and icemelt in the upper Danube discharge today and in the future. Supplementi di Geografia Fisica e Dinamica Quaternaria 33: 221230.Google Scholar
Westoby, M. J., Glasser, N. F., Brasington, J., Hambrey, M. J., Quincey, D. J. & Reynolds, J. M. (2014). Modelling outburst floods from moraine-dammed glacial lakes. Earth-Science Reviews 134 (July): 137159. https://doi.org/10.1016/j.earscirev.2014.03.009.CrossRefGoogle Scholar
Whalley, W. B. (2003). Rock glaciers and protalus landforms: Analogous forms and ice sources on Earth and Mars. Journal of Geophysical Research 108 (E4): 8032. https://doi.org/10.1029/2002JE001864.CrossRefGoogle Scholar
Williams, G. P. & Wolman, M. G. (1984). Downstream effects of dams on alluvial rivers. US Geological Survey Professional Paper 1286, 83 pp.CrossRefGoogle Scholar
Winsemann, J., Brandes, C. & Polom, U. (2011). Response of a proglacial delta to rapid high-amplitude lake-level change: An integration of outcrop data and high-resolution shear wave seismics. Basin Research 23 (1): 2252. https://doi.org/10.1111/j.1365-2117.2010.00465.x.CrossRefGoogle Scholar
Worni, R., Huggel, C., Clague, J. J., Schaub, Y. & Stoffel, M. (2014). Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective. Geomorphology 224 (November): 161176. https://doi.org/10.1016/j.geomorph.2014.06.031.CrossRefGoogle Scholar
Zappa, M. & Kan, C. (2007). Extreme heat and runoff extremes in the Swiss Alps. Natural Hazards and Earth System Sciences 7 (3): 375389. https://doi.org/10.5194/nhess-7-375-2007.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×