Skip to main content Accessibility help
×
Hostname: page-component-f554764f5-fr72s Total loading time: 0 Render date: 2025-04-22T07:55:03.185Z Has data issue: false hasContentIssue false

11 - Modelling

from Part III - Quantifying Connectivity in Geomorphology

Published online by Cambridge University Press:  10 April 2025

Ronald Pöppl
Affiliation:
BOKU University Vienna
Anthony Parsons
Affiliation:
University of Sheffield
Saskia Keesstra
Affiliation:
Wageningen Universiteit, The Netherlands
Get access

Summary

Modelling connectivity is a three-stage process. Foremost, is the conceptualization of the connectivity problem. Two end-members of connectivity may be defined. The first considers connectivity to be an emergent property of a system. The second imposes on the system a specific definition of what connectivity is. The former conceptualisation is useful for applications where feedbacks between functional and structural connectivity occur over a shorter timescale than the duration of the model application, and for developing understanding based on model development and application. The latter is better used where prediction or application of the model results is required. It is further necessary to answer questions about space and time scales of the application and data available to support it. Once the basic units of spatial scale can be defined, development of the model can move on to considering what data are most appropriate at that scale, and how to collect them. In the final stage, different model structures that reflect the emerging and parameterized connectivity end-members are considered. The chapter gives examples of these stages with reference to modelling of water flows and consequent erosion.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Antoine, M., Javaux, M., & Bielders, C., 2009. What indicators can capture runoff-relevant connectivity properties of the micro-topography at the plot scale? Advances in Water Resources. 32, 12971310. https://doi.org/10.1016/j.advwatres.2009.05.006CrossRefGoogle Scholar
Antoine, M., Javaux, M., & Bielders, C. L., 2011. Integrating subgrid connectivity properties of the micro-topography in distributed runoff models, at the interrill scale. Journal of Hydrology. 403, 213223. https://doi.org/10.1016/j.jhydrol.2011.03.027CrossRefGoogle Scholar
Arrouays, D., Poggio, L., Salazar Guerrero, O. A., & Mulder, V. L., 2020. Digital soil mapping and GlobalSoilMap. Main advances and ways forward. Geoderma Regional. 21, e00265. https://doi.org/10.1016/j.geodrs.2020.e00265CrossRefGoogle Scholar
Atkinson, J., de Clercq, W., & Rozanov, A., 2020. Multi-resolution soil-landscape characterisation in KwaZulu Natal: Using geomorphons to classify local soilscapes for improved digital geomorphological modelling. Geoderma Regional. 22, e00291. https://doi.org/10.1016/j.geodrs.2020.e00291CrossRefGoogle Scholar
Baartman, J. E. M., Nunes, J. P., Masselink, R., Darboux, F., Bielders, C., Degré, A., Cantreul, V., Cerdan, O., Grangeon, T., Fiener, P., et al. 2020. What do models tell us about water and sediment connectivity? Geomorphology. 367, 107300. https://doi.org/10.1016/j.geomorph.2020.107300CrossRefGoogle Scholar
Bedau, M. A., 1997. Weak emergence. Noûs. 31, 375399. https://doi.org/10.1111/0029-4624.31.s11.17CrossRefGoogle Scholar
Behrens, T., Schmidt, K., Ramirez-Lopez, L., Gallant, J., Zhu, A.-X., & Scholten, T., 2014. Hyper-scale digital soil mapping and soil formation analysis. Geoderma. 213, 578588. https://doi.org/10.1016/j.geoderma.2013.07.031CrossRefGoogle Scholar
Benda, L., & Dunne, T., 1997a. Stochastic forcing of sediment routing and storage in channel networks. Water Resources Research. 33, 28652880. https://doi.org/10.1029/97WR02387CrossRefGoogle Scholar
Benda, L., & Dunne, T., 1997b. Stochastic forcing of sediment supply to channel networks from landsliding and debris flow. Water Resources Research. 33, 28492863. https://doi.org/10.1029/97WR02388CrossRefGoogle Scholar
Beven, K., 2001. How far can we go in distributed hydrological modelling? Hydrology and Earth System Sciences. 5, 112. https://doi.org/10.5194/hess-5-1-2001CrossRefGoogle Scholar
Beven, K. J., 2000. Uniqueness of place and process representations in hydrological modelling. Hydrology and Earth System Sciences. 4, 203213. https://doi.org/10.5194/hess-4-203-2000CrossRefGoogle Scholar
Bizzi, S., Tangi, M., Schmitt, R. J. P., Pitlick, J., Piégay, H., & Castelletti, A. F., 2021. Sediment transport at the network scale and its link to channel morphology in the braided Vjosa River system. Earth Surface Processes and Landforms. 46, 29462962. https://doi.org/10.1002/esp.5225CrossRefGoogle Scholar
Blöschl, G., 1999. Scaling issues in snow hydrology. Hydrological Processes. 13, 21492175. https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-83.0.CO;2-8>CrossRefGoogle Scholar
Blöschl, G., Grayson, R. B., & Sivapalan, M., 1995. On the representative elementary area (REA) concept and its utility for distributed rainfall-runoff modelling. Hydrological Processes. 9, 313330. https://doi.org/10.1002/hyp.3360090307CrossRefGoogle Scholar
Blöschl, G., & Sivapalan, M., 1995. Scale issues in hydrological modelling: A review. Hydrological Processes. 9, 251290. https://doi.org/10.1002/hyp.3360090305CrossRefGoogle Scholar
Bogen, J., & Woodward, J., 1988. Saving the phenomena. The Philosophical Review. 97, 303. https://doi.org/10.2307/2185445CrossRefGoogle Scholar
Bonfatti, B. R., Demattê, J. A. M., Marques, K. P. P., Poppiel, R. R., Rizzo, R., Mendes, W. de S., Silvero, N. E. Q., & Safanelli, J. L., 2020. Digital mapping of soil parent material in a heterogeneous tropical area. Geomorphology. 367, 107305. https://doi.org/10.1016/j.geomorph.2020.107305CrossRefGoogle Scholar
Braun, J., & Sambridge, M., 1997. Modelling landscape evolution on geological time scales: A new method based on irregular spatial discretization. Basin Research. 9, 2752. https://doi.org/10.1046/j.1365-2117.1997.00030.xCrossRefGoogle Scholar
Callaghan, K. L., & Wickert, A. D., 2019. Computing water flow through complex landscapes – Part 1: Incorporating depressions in flow routing using FlowFill. Earth Surface Dynamics. 7, 737753. https://doi.org/10.5194/esurf-7-737-2019CrossRefGoogle Scholar
Casas, A., Benito, G., Thorndycraft, V. R., & Rico, M., 2006. The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surface Processes and Landforms. 31, 444456. https://doi.org/10.1002/esp.1278CrossRefGoogle Scholar
Caviedes‐Voullième, D., Ahmadinia, E., & Hinz, C., 2021. Interactions of microtopography, slope and infiltration cause complex rainfall‐runoff behavior at the hillslope scale for single rainfall events. Water Resources Research. 57. https://doi.org/10.1029/2020WR028127CrossRefGoogle Scholar
Clark, M. P., Bierkens, M. F. P., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., Pauwels, V. R. N., Cai, X., Wood, A. W., & Peters-Lidard, C. D., 2017. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism. Hydrology and Earth System Sciences. 21, 34273440. https://doi.org/10.5194/hess-21-3427-2017CrossRefGoogle ScholarPubMed
Cooper, J. R., Wainwright, J., Parsons, A. J., Onda, Y., Fukuwara, T., Obana, E., Kitchener, B., Long, E. J., & Hargrave, G. H., 2012. A new approach for simulating the redistribution of soil particles by water erosion: A marker-in-cell model: Soil erosion, marker-in-cell model. Journal of Geophysical Research. 117. https://doi.org/10.1029/2012JF002499CrossRefGoogle Scholar
Cossart, E., 2016. L’(in)efficacité géomorphologique des cascades sédimentaires en question: les apports d’une analyse réseau. Cybergeo: European Journal of Geography. https://doi.org/10.4000/cybergeo.27625CrossRefGoogle Scholar
Coulthard, T. J., Macklin, M. G., & Kirkby, M. J., 2002. A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surface Processes and Landforms. 27, 269288. https://doi.org/10.1002/esp.318CrossRefGoogle Scholar
Coulthard, T. J., Neal, J. C., Bates, P. D., Ramirez, J., de Almeida, G. A. M., & Hancock, G. R., 2013. Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model: implications for modelling landscape evolution: Integrating hydrodynamics in landscape evolution models. Earth Surface Processes and Landforms. 38, 18971906. https://doi.org/10.1002/esp.3478CrossRefGoogle Scholar
Crave, A., & Davy, P., 2001. A stochastic “precipiton” model for simulating erosion/sedimentation dynamics. Computers & Geosciences. 27, 815827. https://doi.org/10.1016/S0098-3004(00)00167-9CrossRefGoogle Scholar
Crema, S., Llena, M., Calsamiglia, A., Estrany, J., Marchi, L., Vericat, D., & Cavalli, M., 2020. Can inpainting improve digital terrain analysis? Comparing techniques for void filling, surface reconstruction and geomorphometric analyses. Earth Surface Processes and Landforms. 45, 736755. https://doi.org/10.1002/esp.4739CrossRefGoogle Scholar
Czuba, J. A., & Foufoula-Georgiou, E., 2015. Dynamic connectivity in a fluvial network for identifying hotspots of geomorphic change. Water Resources Research. 51, 14011421. https://doi.org/10.1002/2014WR016139CrossRefGoogle Scholar
Czuba, J. A., & Foufoula-Georgiou, E., 2014. A network-based framework for identifying potential synchronizations and amplifications of sediment delivery in river basins. Water Resources Research. 50, 38263851. https://doi.org/10.1002/2013WR014227CrossRefGoogle Scholar
Czuba, J. A., Foufoula‐Georgiou, E., Gran, K. B., Belmont, P., & Wilcock, P. R., 2017. Interplay between spatially explicit sediment sourcing, hierarchical river‐network structure, and in‐channel bed material sediment transport and storage dynamics. Journal of Geophysical Research. 122, 10901120. https://doi.org/10.1002/2016JF003965CrossRefGoogle Scholar
Darby, S. E., Trieu, H. Q., Carling, P. A., Sarkkula, J., Koponen, J., Kummu, M., Conlan, I., & Leyland, J., 2010. A physically based model to predict hydraulic erosion of fine-grained riverbanks: The role of form roughness in limiting erosion. Journal of Geophysical Research. 115, F04003. https://doi.org/10.1029/2010JF001708CrossRefGoogle Scholar
Defina, A., 2000. Two-dimensional shallow flow equations for partially dry areas. Water Resources Research. 36, 32513264. https://doi.org/10.1029/2000WR900167CrossRefGoogle Scholar
Edmonds, B., Le Page, C., Bithell, M., Chattoe-Brown, E., Grimm, V., Meyer, R., Montañola-Sales, C., Ormerod, P., Root, H., & Squazzoni, F., 2019. Different modelling purposes. Journal of Artificial Societies and Social Simulation. 22, 6. https://doi.org/10.18564/jasss.3993CrossRefGoogle Scholar
England, C. B., Onstad, C. A., 1968. Isolation and characterization of hydrologic response units within agricultural watersheds. Water Resources Research. 4, 7377. https://doi.org/10.1029/WR004i001p00073CrossRefGoogle Scholar
Epstein, J. M., 2008. Why model? Journal of Artificial Societies and Social Simulation. 11, 12.Google Scholar
Fan, Y., & Bras, R. L., 1995. On the concept of a representative elementary area in catchment runoff. Hydrological Processes. 9, 821832. https://doi.org/10.1002/hyp.3360090708CrossRefGoogle Scholar
Fatichi, S., Katul, G. G., Ivanov, V. Y., Pappas, C., Paschalis, A., Consolo, A., Kim, J., & Burlando, P., 2015. Abiotic and biotic controls of soil moisture spatiotemporal variability and the occurrence of hysteresis. Water Resources Research. 51, 35053524. https://doi.org/10.1002/2014WR016102CrossRefGoogle Scholar
Favis-Mortlock, D., 1998. A self-organizing dynamic systems approach to the simulation of rill initiation and development on hillslopes. Computers & Geosciences. 24, 353372. https://doi.org/10.1016/S0098-3004(97)00116-7CrossRefGoogle Scholar
Favis-Mortlock, D. T., Boardman, J., Parsons, A. J., & Lascelles, B., 2000. Emergence and erosion: A model for rill initiation and development. Hydrological Processes. 14, 21732205. https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2173::AID-HYP61>3.0.CO;2-63.0.CO;2-6>CrossRefGoogle Scholar
Flügel, W.-A., 1995. Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrological Processes. 9, 423436. https://doi.org/10.1002/hyp.3360090313CrossRefGoogle Scholar
Forrest, S. B., & Haff, P. K., 1992. Mechanics of wind ripple stratigraphy. Science. 255, 12401243. https://doi.org/10.1126/science.255.5049.1240CrossRefGoogle ScholarPubMed
Frigg, R., Thompson, E., & Werndl, C., 2015. Philosophy of climate science part I: Observing climate change: Observing climate change. Philosophy Compass. 10, 953964. https://doi.org/10.1111/phc3.12294CrossRefGoogle Scholar
Goodrich, D. C., Burns, I. S., Unkrich, C. L., Semmens, D. J., Guertin, D. P., Hernandez, M., Yatheendradas, S., Kennedy, J. R., & Levick, L. R., 2012. KINEROS2/AGWA: Model use, calibration, and validation. Transactions of the ASABE. 55, 15611574. https://doi.org/10.13031/2013.42264CrossRefGoogle Scholar
Gran, K. B., & Czuba, J. A., 2017. Sediment pulse evolution and the role of network structure. Geomorphology. 277, 1730. https://doi.org/10.1016/j.geomorph.2015.12.015CrossRefGoogle Scholar
Haff, P. K., 2001. Waterbots, In Harmon, R. S., & Doe, W. W. (eds.), Landscape Erosion and Evolution Modeling. Springer US: Boston, MA, 239275. https://doi.org/10.1007/978-1-4615-0575-4_9CrossRefGoogle Scholar
Harel, M.-A., & Mouche, E., 2014. Is the connectivity function a good indicator of soil infiltrability distribution and runoff flow dimension?: Connectivity function. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.3604CrossRefGoogle Scholar
Harel, M.-A., & Mouche, E., 2013. 1-D steady state runoff production in light of queuing theory: Heterogeneity, connectivity, and scale: 1-D Runoff production and queuing theory. Water Resources Research. 49, 79737991. https://doi.org/10.1002/2013WR013596CrossRefGoogle Scholar
Hawkins, R. H., & Cundy, T. W., 1987. Steady-state analysis of infiltration and overland flow for spatially-varied hillslopes. Journal of the American Water Resources Association. 23, 251256. https://doi.org/10.1111/j.1752-1688.1987.tb00804.xCrossRefGoogle Scholar
Heckmann, T., & Schwanghart, W., 2013. Geomorphic coupling and sediment connectivity in an alpine catchment – Exploring sediment cascades using graph theory. Geomorphology. 182, 89103. https://doi.org/10.1016/j.geomorph.2012.10.033CrossRefGoogle Scholar
Her, Y., Heatwole, C. D., & Kang, M. S., 2015. Interpolating SRTM elevation data to higher resolution to improve hydrologic analysis. Journal of the American Water Resources Association. 51, 10721087. https://doi.org/10.1111/jawr.12287CrossRefGoogle Scholar
Hubbert, M. K. 1956. Darcy’s law and the field equations of the flow of underground fluids. Transactions of the AIME. 207, 222239.CrossRefGoogle Scholar
Hughes, J. D., Decker, J. D., & Langevin, C. D., 2011. Use of upscaled elevation and surface roughness data in two-dimensional surface water models. Advances in Water Resources. 34, 11511164. https://doi.org/10.1016/j.advwatres.2011.02.004CrossRefGoogle Scholar
Hutton, C., Nicholas, A., & Brazier, R., 2014. Sub-grid scale parameterization of hillslope runoff and erosion processes for catchment-scale models of semi-arid landscapes: Sub-grid scale runoff and erosion modelling. Hydrological Processes. 28, 17131721. https://doi.org/10.1002/hyp.9712CrossRefGoogle Scholar
Ivanov, V. Y., Fatichi, S., Jenerette, G. D., Espeleta, J. F., Troch, P. A., & Huxman, T. E., 2010. Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation: Soil moisture spatial heterogeneity. Water Resources Research. 46. https://doi.org/10.1029/2009WR008611CrossRefGoogle Scholar
Jovanovic, T., Hale, R. L., Gironás, J., & Mejia, A., 2019. Hydrological functioning of an evolving urban stormwater network. Water Resources Research. 55, 65176533. https://doi.org/10.1029/2019WR025236CrossRefGoogle Scholar
Kim, J., Dwelle, M. C., Kampf, S. K., Fatichi, S., & Ivanov, V. Y., 2016. On the non-uniqueness of the hydro-geomorphic responses in a zero-order catchment with respect to soil moisture. Advances in Water Resources. 92, 7389. https://doi.org/10.1016/j.advwatres.2016.03.019CrossRefGoogle Scholar
Kirkby, M. J., 1987. Models in physical geography, In Clark, M. J., Gregory, K. J., Gurnell, A. M. (eds.), Horizons in Physical Geography. MacMillan, Basingstoke, 4761.CrossRefGoogle Scholar
Kitcher, P., 1995. The Advancement of Science. Oxford University Press, Oxford. https://doi.org/10.1093/0195096533.001.0001CrossRefGoogle Scholar
Lane, S. N., 2005. Roughness – time for a re-evaluation? Earth Surface Processes and Landforms. 30, 251253. https://doi.org/10.1002/esp.1208CrossRefGoogle Scholar
Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., & Saugy, J.-N., 2017. Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology. 277, 210227. https://doi.org/10.1016/j.geomorph.2016.02.015CrossRefGoogle Scholar
Leavesley, G. H., Lichty, R. W., Troutman, B. M., & Saindon, L. G., 1983. Precipitation-Runoff Modeling System: User’s Manual (No. 83–4238). Water-Resources Investigations Report. Denver, CO.Google Scholar
Lisenby, P. E., & Fryirs, K. A., 2017. ‘Out with the Old?’ Why coarse spatial datasets are still useful for catchment‐scale investigations of sediment (dis)connectivity. Earth Surface Processes and Landforms. 42, 15881596. https://doi.org/10.1002/esp.4131CrossRefGoogle Scholar
Mahoney, D. T., Fox, J., Al-Aamery, N., & Clare, E., 2020a. Integrating connectivity theory within watershed modelling part I: Model formulation and investigating the timing of sediment connectivity. Science of the Total Environment. 740, 140385. https://doi.org/10.1016/j.scitotenv.2020.140385CrossRefGoogle ScholarPubMed
Mahoney, D. T., Fox, J., Al-Aamery, N., & Clare, E., 2020b. Integrating connectivity theory within watershed modelling part II: Application and evaluating structural and functional connectivity. Science of the Total Environment. 740, 140386. https://doi.org/10.1016/j.scitotenv.2020.140386CrossRefGoogle ScholarPubMed
McBratney, A. B., Mendonça Santos, M. L., & Minasny, B., 2003. On digital soil mapping. Geoderma. 117, 352. https://doi.org/10.1016/S0016-7061(03)00223-4CrossRefGoogle Scholar
McGough, A. S., Liang, S., Rapoportas, M., Grey, R., Vinod, G. K., Maddy, D., Trueman, A., & Wainwright, J., 2012. Massively parallel landscape-evolution modelling using general purpose graphical processing units. In 2012 19th International Conference on High Performance Computing. Presented at the 2012 19th International Conference on High Performance Computing (HiPC), IEEE, Pune, India, pp. 1–10. https://doi.org/10.1109/HiPC.2012.6507488CrossRefGoogle Scholar
Mewes, B., & Schumann, A. H., 2018. IPA (v1): a framework for agent-based modelling of soil water movement. Geoscientific Model Development. 11, 21752187. https://doi.org/10.5194/gmd-11-2175-2018CrossRefGoogle Scholar
Michaelides, K., & Wainwright, J., 2008. Internal testing of a numerical model of hillslope–channel coupling using laboratory flume experiments. Hydrological Processes. 22, 22742291. https://doi.org/10.1002/hyp.6823CrossRefGoogle Scholar
Michaelides, K., & Wainwright, J., 2002. Modelling the effects of hillslope-channel coupling on catchment hydrological response. Earth Surface Processes and Landforms. 27, 14411457. https://doi.org/10.1002/esp.440CrossRefGoogle Scholar
Millares-Valenzuela, A., Eekhout, J. P. C., Martínez-Salvador, A., García-Lorenzo, R., Pérez-Cutillas, P., & Conesa-García, C., 2022. Evaluation of sediment connectivity through physically-based erosion modeling of landscape factor at the event scale. CATENA. 213, 106165. https://doi.org/10.1016/j.catena.2022.106165CrossRefGoogle Scholar
Minasny, B., & McBratney, Alex.B., 2016. Digital soil mapping: A brief history and some lessons. Geoderma. 264, 301311. https://doi.org/10.1016/j.geoderma.2015.07.017CrossRefGoogle Scholar
Mulder, V. L., Lacoste, M., Richer-de-Forges, A. C., & Arrouays, D., 2016. GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth. Science of the Total Environment. 573, 13521369. https://doi.org/10.1016/j.scitotenv.2016.07.066CrossRefGoogle ScholarPubMed
Müller, E. N., 2007. Scaling Approaches to the Modelling of Water, Sediment and Nutrient Fluxes within Semi-arid Landscapes, Jornada Basin, New Mexico. Logos-Verl, Berlin.Google Scholar
Mulligan, M., & Wainwright, J., 2013. Modelling and model building, In Wainwright, J., Mulligan, M. (eds.), Environmental Modelling. John Wiley & Sons, Ltd: Chichester, UK, 726. https://doi.org/10.1002/9781118351475.ch2CrossRefGoogle Scholar
Murray, A. B., & Paola, C., 1994. A cellular model of braided rivers. Nature. 371, 5457. https://doi.org/10.1038/371054a0CrossRefGoogle Scholar
Neill, A. J., Tetzlaff, D., Strachan, N. J. C., Hough, R. L., Avery, L. M., Kuppel, S., Maneta, M. P., & Soulsby, C., 2020a. An agent-based model that simulates the spatio-temporal dynamics of sources and transfer mechanisms contributing faecal indicator organisms to streams. Part 1: Background and model description. Journal of Environmental Management. 270, 110903. https://doi.org/10.1016/j.jenvman.2020.110903CrossRefGoogle ScholarPubMed
Neill, A. J., Tetzlaff, D., Strachan, N. J. C., Hough, R. L., Avery, L. M., Maneta, M. P., & Soulsby, C., 2020b. An agent-based model that simulates the spatio-temporal dynamics of sources and transfer mechanisms contributing faecal indicator organisms to streams. Part 2: Application to a small agricultural catchment. Journal of Environmental Management. 270, 110905. https://doi.org/10.1016/j.jenvman.2020.110905CrossRefGoogle ScholarPubMed
Newman, B. D., Wilcox, B. P., Archer, S. R., Breshears, D. D., Dahm, C. N., Duffy, C. J., McDowell, N. G., Phillips, F. M., Scanlon, B. R., & Vivoni, E. R., 2006. Ecohydrology of water-limited environments: A scientific vision: Opinion. Water Resources Research. 42. https://doi.org/10.1029/2005WR004141CrossRefGoogle Scholar
Nunes, J. P., Wainwright, J., Bielders, C. L., Darboux, F., Fiener, P., Finger, D., Turnbull, L., & Team, C. W. T.-T., 2018. Better models are more effectively connected models. Earth Surface Processes and Landforms. 43, 13551360. https://doi.org/10.1002/esp.4323Google Scholar
Oreskes, N., Shrader-Frechette, K., & Belitz, K., 1994. Verification, validation, and confirmation of numerical models in the earth sciences. Science. 263, 641646. https://doi.org/10.1126/science.263.5147.641CrossRefGoogle ScholarPubMed
Özgen, I., Teuber, K., Simons, F., Liang, D., & Hinkelmann, R., 2015. Upscaling the shallow water model with a novel roughness formulation. Environmental Earth Sciences. 74, 73717386. https://doi.org/10.1007/s12665-015-4726-7CrossRefGoogle Scholar
Parsons, A. J., Abrahams, A. D., & Wainwright, J., 1994. On determining resistance to interrill overland flow. Water Resources Research. 30, 35153521. https://doi.org/10.1029/94WR02176CrossRefGoogle Scholar
Parsons, A. J., Wainwright, J., Abrahams, A. D., & Simanton, J. R., 1997. Distributed dynamic modelling of interrill overland flow. Hydrological Processes. 11, 18331859. https://doi.org/10.1002/(SICI)1099-1085(199711)11:14<1833::AID-HYP499>3.0.CO;2-73.0.CO;2-7>CrossRefGoogle Scholar
Passalacqua, P., 2017. The Delta Connectome: A network-based framework for studying connectivity in river deltas. Geomorphology. 277, 5062. https://doi.org/10.1016/j.geomorph.2016.04.001CrossRefGoogle Scholar
Passalacqua, P., Belmont, P., Staley, D. M., Simley, J. D., Arrowsmith, J. R., Bode, C. A., Crosby, C., et al. 2015. Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review. Earth-Science Reviews. 148, 174193. https://doi.org/10.1016/j.earscirev.2015.05.012CrossRefGoogle Scholar
Paton, E., & Haacke, N., 2021. Merging patterns and processes of diffuse pollution in urban watersheds: A connectivity assessment. WIREs Water. 8. https://doi.org/10.1002/wat2.1525CrossRefGoogle Scholar
Peñuela, A., Javaux, M., & Bielders, C. L., 2015. How do slope and surface roughness affect plot-scale overland flow connectivity? Journal of Hydrology. 528, 192205. https://doi.org/10.1016/j.jhydrol.2015.06.031CrossRefGoogle Scholar
Peñuela, A., Javaux, M., & Bielders, C. L., 2013. Scale effect on overland flow connectivity at the plot scale. Hydrology and Earth System Sciences. 17, 87101. https://doi.org/10.5194/hess-17-87-2013CrossRefGoogle Scholar
Poblete, D., Arevalo, J., Nicolis, O., & Figueroa, F., 2020. Optimization of hydrologic response units (HRUs) using gridded meteorological data and spatially varying parameters. Water. 12, 3558. https://doi.org/10.3390/w12123558CrossRefGoogle Scholar
Pöppl, R. E., & Parsons, A. J., 2018. The geomorphic cell: A basis for studying connectivity: The geomorphic cell. Earth Surface Processes and Landforms. 43, 11551159. https://doi.org/10.1002/esp.4300CrossRefGoogle Scholar
Poole, G., Stanford, J., Running, S., Frissell, C., Woessner, W., & Ellis, B., 2004. A patch hierarchy approach to modeling surface and subsurface hydrology in complex flood-plain environments. Earth Surface Processes and Landforms. 29, 12591274. https://doi.org/10.1002/esp.1091CrossRefGoogle Scholar
Poole, G. C., O’Daniel, S. J., Jones, K. L., Woessner, W. W., Bernhardt, E. S., Helton, A. M., Stanford, J. A., Boer, B. R., & Beechie, T. J., 2008. Hydrologic spiralling: the role of multiple interactive flow paths in stream ecosystems. River Research and Applications. 24, 10181031. https://doi.org/10.1002/rra.1099CrossRefGoogle Scholar
Porter, K. D. H., Reaney, S. M., Quilliam, R. S., Burgess, C., & Oliver, D. M., 2017. Predicting diffuse microbial pollution risk across catchments: The performance of SCIMAP and recommendations for future development. Science of the Total Environment. 609, 456465. https://doi.org/10.1016/j.scitotenv.2017.07.186CrossRefGoogle ScholarPubMed
Reaney, S. M., 2008. The use of agent based modelling techniques in hydrology: Determining the spatial and temporal origin of channel flow in semi-arid catchments. Earth Surface Processes and Landforms. 33, 317327. https://doi.org/10.1002/esp.1540CrossRefGoogle Scholar
Reaney, S. M., Bracken, L. J., & Kirkby, M. J., 2014. The importance of surface controls on overland flow connectivity in semi-arid environments: results from a numerical experimental approach: Surface controls on overland flow connectivity. Hydrological Processes. 28, 21162128. https://doi.org/10.1002/hyp.9769CrossRefGoogle Scholar
Reaney, S. M., Bracken, L. J., & Kirkby, M. J., 2007. Use of the connectivity of runoff model (CRUM) to investigate the influence of storm characteristics on runoff generation and connectivity in semi-arid areas. Hydrological Processes. 21, 894906. https://doi.org/10.1002/hyp.6281CrossRefGoogle Scholar
Reaney, S. M., Lane, S. N., Heathwaite, A. L., & Dugdale, L. J., 2011. Risk-based modelling of diffuse land use impacts from rural landscapes upon salmonid fry abundance. Ecological Modelling. 222, 10161029. https://doi.org/10.1016/j.ecolmodel.2010.08.022CrossRefGoogle Scholar
Refsgaard, J. C., Højberg, A. L., He, X., Hansen, A. L., Rasmussen, S. H., & Stisen, S., 2016. Where are the limits of model predictive capabilities? Representative elementary scale – RES. Hydrological Processes. 30, 49564965. https://doi.org/10.1002/hyp.11029CrossRefGoogle Scholar
Renard, P., & Allard, D., 2013. Connectivity metrics for subsurface flow and transport. Advances in Water Resources. 51, 168196. https://doi.org/10.1016/j.advwatres.2011.12.001CrossRefGoogle Scholar
Reulier, R., Delahaye, D., Caillault, S., Viel, V., Douvinet, J., & Bensaid, A., 2016. Mesurer l’impact des entités linéaires paysagères sur les dynamiques spatiales du ruissellement : une approche par simulation multi-agents. Cybergeo: European Journal of Geography. https://doi.org/10.4000/cybergeo.27768CrossRefGoogle Scholar
Reulier, R., Delahaye, D., & Viel, V., 2019. Agricultural landscape evolution and structural connectivity to the river for matter flux, a multi-agents simulation approach. CATENA. 174, 524535. https://doi.org/10.1016/j.catena.2018.11.036CrossRefGoogle Scholar
Reulier, R., Delahaye, D., Viel, V., & Davidson, R., 2017. Connectivité hydro-sédimentaire dans un petit bassin versant agricole du nord-ouest de la France : de l’expertise de terrain à la modélisation par Système Multi-Agent. Géomorphologie : Relief, Processus, Environnement. 23, 327340. https://doi.org/10.4000/geomorphologie.11857CrossRefGoogle Scholar
Schmitt, R. J. P., Bizzi, S., & Castelletti, A., 2016. Tracking multiple sediment cascades at the river network scale identifies controls and emerging patterns of sediment connectivity: Tracking multiple sediment cascades at river network scale. Water Resources Research. 52, 39413965. https://doi.org/10.1002/2015WR018097CrossRefGoogle Scholar
Singh, M., Tandon, S. K., & Sinha, R., 2017. Assessment of connectivity in a water-stressed wetland (Kaabar Tal) of Kosi-Gandak interfan, north Bihar Plains, India: Connectivity response units in a wetland. Earth Surface Processes and Landforms. 42, 19821996. https://doi.org/10.1002/esp.4156CrossRefGoogle Scholar
Skidmore, E. L., 1997. Comment on chain method for measuring soil roughness. Soil Science Society of America Journal. 61, 15321533. https://doi.org/10.2136/sssaj1997.03615995006100050034xCrossRefGoogle Scholar
Smith, M. W., 2014. Roughness in the earth sciences. Earth-Science Reviews. 136, 202225. https://doi.org/10.1016/j.earscirev.2014.05.016CrossRefGoogle Scholar
Smith, R., 1991. The application of cellular automata to the erosion of landforms. Earth Surface Processes and Landforms. 16, 273281. https://doi.org/10.1002/esp.3290160307CrossRefGoogle Scholar
Spence, C., & Hosler, J., 2007. Representation of stores along drainage networks in heterogenous landscapes for runoff modelling. Journal of Hydrology. 347, 474486. https://doi.org/10.1016/j.jhydrol.2007.09.035CrossRefGoogle Scholar
Suppes, P. 1962. Models of data. In Nagel, E., Suppes, P., Tarski, A. (eds) Logic, Methodology and Philosophy of Science: Proceedings of the 1960 International Congress, 252261. Stanford University Press, Stanford, CA.Google Scholar
Tangi, M., Schmitt, R., Bizzi, S., & Castelletti, A., 2019. The CASCADE toolbox for analyzing river sediment connectivity and management. Environmental Modelling & Software. 119, 400406. https://doi.org/10.1016/j.envsoft.2019.07.008CrossRefGoogle Scholar
Thomsen, L. M., Baartman, J. E. M., Barneveld, R. J., Starkloff, T., & Stolte, J., 2015. Soil surface roughness: Comparing old and new measuring methods and application in a soil erosion model. SOIL. 1, 399410. https://doi.org/10.5194/soil-1-399-2015CrossRefGoogle Scholar
Tromp-van Meerveld, H. J., & McDonnell, J. J., 2006. Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis: Threshold flow relations, 2. Water Resources Research. 42. https://doi.org/10.1029/2004WR003800CrossRefGoogle Scholar
Turnbull, L., Hütt, M.-T., Ioannides, A. A., Kininmonth, S., Pöppl, R., Tockner, K., Bracken, L. J., et al. 2018. Connectivity and complex systems: Learning from a multi-disciplinary perspective. Applied Network Science. 3, 11. https://doi.org/10.1007/s41109-018-0067-2CrossRefGoogle ScholarPubMed
Turnbull, L., & Wainwright, J., 2019. From structure to function: Understanding shrub encroachment in drylands using hydrological and sediment connectivity. Ecological Indicators. 98, 608618. https://doi.org/10.1016/j.ecolind.2018.11.039CrossRefGoogle Scholar
Voutsa, V., Battaglia, D., Bracken, L. J., Brovelli, A., Costescu, J., Díaz Muñoz, M., Fath, B. et al., 2021. Two classes of functional connectivity in dynamical processes in networks. The Journal of the Royal Society Interface. 18, 20210486. https://doi.org/10.1098/rsif.2021.0486CrossRefGoogle ScholarPubMed
Wainwright, J., 2015. Stability and instability in Mediterranean landscapes: A geoarchaeological perspective, In Dykes, A. P., Mulligan, M., Wainwright, J. (eds.), Monitoring and Modelling Dynamic Environments. Wiley, Chichester, UK, 22.Google Scholar
Wainwright, J., 2008. Can modelling enable us to understand the rôle of humans in landscape evolution? Geoforum. 39, 659674. https://doi.org/10.1016/j.geoforum.2006.09.011CrossRefGoogle Scholar
Wainwright, J., 1996a. Infiltration, runoff and erosion characteristics of agricultural land in extreme storm events, SE France. CATENA. 26, 2747. https://doi.org/10.1016/0341-8162(95)00033-XCrossRefGoogle Scholar
Wainwright, J., 1996b. Hillslope response to extreme storm events: The example of the Vaison-la-Romaine event, In Anderson, M. G., Brooks, S. M. (eds.), Advances in Hillslope Processes. John Wiley and Sons, Chichester, 9971026.Google Scholar
Wainwright, J., 1994. Erosion of archaeological sites: Results and implications of a site simulation model. Geoarchaeology. 9, 173201. https://doi.org/10.1002/gea.3340090302CrossRefGoogle Scholar
Wainwright, J., & Millington, J. D. A., 2010. Mind, the gap in landscape-evolution modelling. Earth Surface Processes and Landforms. 35, 842855. https://doi.org/10.1002/esp.2008CrossRefGoogle Scholar
Wainwright, J., & Parsons, A. J., 2002. The effect of temporal variations in rainfall on scale dependency in runoff coefficients: Temporal variations in rainfall. Water Resources Research. 38, 7-1–7-10. https://doi.org/10.1029/2000WR000188CrossRefGoogle Scholar
Wainwright, J., Turnbull, L., Ibrahim, T. G., Lexartza-Artza, I., Thornton, S. F., & Brazier, R. E., 2011. Linking environmental régimes, space and time: Interpretations of structural and functional connectivity. Geomorphology. 126, 387404. https://doi.org/10.1016/j.geomorph.2010.07.027CrossRefGoogle Scholar
Western, A. W., & Blöschl, G., 1999. On the spatial scaling of soil moisture. Journal of Hydrology. 217, 203224. https://doi.org/10.1016/S0022-1694(98)00232-7CrossRefGoogle Scholar
Winsberg, E., 2018. Philosophy and Climate Science, 1st ed. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781108164290CrossRefGoogle Scholar
Wood, E. F., Sivapalan, M., Beven, K., & Band, L., 1988. Effects of spatial variability and scale with implications to hydrologic modeling. Journal of Hydrology. 102, 2947. https://doi.org/10.1016/0022-1694(88)90090-XCrossRefGoogle Scholar
Xu, H., van der Steeg, S., Sullivan, J., Shelley, D., Cely, J. E., Viparelli, E., Lakshmi, V., & Torres, R., 2020. Intermittent channel systems of a low‐relief, low‐gradient floodplain: Comparison of automatic extraction methods. Water Resources Research. 56. https://doi.org/10.1029/2020WR027603CrossRefGoogle Scholar
Zhang, X., Drake, N. A., & Wainwright, J., 2013. Spatial modelling and scaling issues, In Wainwright, J., Mulligan, M. (eds.), Environmental Modelling. John Wiley & Sons, Ltd, Chichester, UK, 6990. https://doi.org/10.1002/9781118351475.ch5CrossRefGoogle Scholar
Zhang, X., Drake, N. A., Wainwright, J., & Mulligan, M., 1999. Comparison of slope estimates from low resolution DEMs: Scaling issues and a fractal method for their solution. Earth Surface Processes and Landforms. 24, 763779. https://doi.org/10.1002/(SICI)1096-9837(199908)24:9<763::AID-ESP9>3.0.CO;2-J3.0.CO;2-J>CrossRefGoogle Scholar
Zhang, Z., Chen, X., Cheng, Q., Li, S., Yue, F., Peng, T., Waldron, S., Oliver, D. M., & Soulsby, C., 2020. Coupled hydrological and biogeochemical modelling of nitrogen transport in the karst critical zone. Science of the Total Environment. 732, 138902. https://doi.org/10.1016/j.scitotenv.2020.138902CrossRefGoogle ScholarPubMed
Ziegler, A. D., Giambelluca, T. W., Plondke, D., Leisz, S., Tran, L. T., Fox, J., Nullet, M. A., Vogler, J. B., Minh Troung, D., & Tran Duc, V., 2007. Hydrological consequences of landscape fragmentation in mountainous northern Vietnam: Buffering of Hortonian overland flow. Journal of Hydrology. 337, 5267. https://doi.org/10.1016/j.jhydrol.2007.01.031CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×