Skip to main content Accessibility help
×
Hostname: page-component-f554764f5-fr72s Total loading time: 0 Render date: 2025-04-21T17:49:58.806Z Has data issue: false hasContentIssue false

Part I - Introduction

Published online by Cambridge University Press:  10 April 2025

Ronald Pöppl
Affiliation:
BOKU University Vienna
Anthony Parsons
Affiliation:
University of Sheffield
Saskia Keesstra
Affiliation:
Wageningen Universiteit, The Netherlands
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Bertalanffy, L. von 1950. ‘An outline of general system theory.’ British Journal for the Philosophy of Science, 1, 114129.CrossRefGoogle Scholar
Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M., & Roy, A. G. 2013. Concepts of hydrological connectivity: research approaches, pathways and future agendas. Earth Science Review, 119, 1734.CrossRefGoogle Scholar
Cerdeira, J. O., Pinto, L. S., Cabeza, M., & Gaston, K. J. 2010. Species specific connectivity in reserve-network design using graphs. Biological Conservation, 143, 408415.CrossRefGoogle Scholar
Comin, C. H., Peron, T., Silva, F. N., Amancio, D. R., Rodrigues, F. A., & Costa, L. da F. 2020. Complex systems: features, similarity and connectivity. Physics Reports, 861, 141. doi: 10.1016/j.phys.rep.2020.03.002CrossRefGoogle Scholar
Grayson, R. B. & Moore, I. D. 1992. Effect of land-surface configuration on catchment hydrology. In Parsons, A. J. & Abrahams, A. D. (eds.), Overland Flow. London: UCL Press, 147175.Google Scholar
Hulme, P. E. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. Journal of Applied Ecology, 46, 1018.CrossRefGoogle Scholar
Iori, G. & Mantegna, R. N. 2018. Empirical analyses of networks in finance. In Hommes, C. & LeBaron, B. (eds.), Handbook of Computational Economics, Vol. 4. New York: Elsevier, 637685. doi: 10.1016/bs.hescom.2018.02.005Google Scholar
Kool, J. T., Moilanen, A., & Treml, E. A. 2013. Population connectivity: recent advances and new perspectives, Landscape Ecology, 28, 165185. doi: 10.1007/s10980-012-9819-zCrossRefGoogle Scholar
Luce, R. D. & Perry, A. D. 1949. A method of matrix analysis of group structure. Psychometrika, 14, 95116. doi: 10.1007/BF02289146CrossRefGoogle ScholarPubMed
Mabbutt, J. A. 1968. Review of concepts of land classification. In Stewart, G. A. (ed.), Land Evaluation. Melbourne: Macmillan of Australia, 1128.Google Scholar
Poeppl, R. E., Fryirs, K. A., Tunnicliffe, J., & Brierley, G. J. 2020. Managing sediment (dis)connectivity in fluvial systems. Science of the Total Environment, 736. doi: 10.1016/j.scitotenv.2020.1.139627CrossRefGoogle ScholarPubMed
Prihar, Z. 1956. Topological properties of communication networks. Proceedings of the Institute of Radio Engineers, 44, 927933.Google Scholar
Tsonis, A. A., Swanson, K. L., & Wang, G. 2008. On the role of atmospheric teleconnections in climate. Journal of Climate, 21, 29903001. doi: 10.1175/2007JCLI1907.1CrossRefGoogle Scholar
Turnbull, L., Hütt, M.-T., Ioannides, A. A., Kininmonth, S., Poeppl, R., Tockner, K., Bracken, L. B., Keesstra, S., Liu, L., Masselink, R., & Parsons, A. J. 2018. Connectivity and complex systems: learning from a multi-disciplinary perspective. Applied Network Science, 3, 11. doi: 10.1007/s41109-018-0067-2CrossRefGoogle ScholarPubMed
Wells, H. G. 1908. First and Last Things. London: Robinson, 307 pp.Google Scholar
Whyburn, G. T. 1931. The cyclic and higher connectivity of locally connected spaces. American Journal of Mathematics, 52, 427442. doi: 10.2307/2370795CrossRefGoogle Scholar
Wohl, E., Brierley, G., Cadol, D., Coulthard, T. J., Covino, T., Fryirs, K. A., Grant, G., Hilton, R. G., Lane, S. N., Magilligan, F. J., Meitzen, K. M., Passalacqua, P., Poeppl, R. E., Rathburn, S. L., & Sklar, L. S. 2019. Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms, 44, 426.CrossRefGoogle Scholar

References

Ali, G. A. & Roy, A. G. (2009). Revisiting hydrologic sampling strategies for an accurate assessment of hydrologic connectivity in humid temperate systems. Geography Compass, 3(1), 350374.CrossRefGoogle Scholar
Ambroise, B. (2004). Variable ‘active’ versus ‘contributing’ areas or periods: A necessary distinction. Hydrological Processes, 18, 11491155.CrossRefGoogle Scholar
Aryal, S. K., Mein, R. G. & O’Loughlin, E. M. (2003). The concept of effective length in hillslopes: Assessing the influence of climate and topography on the contributing area of catchments. Hydrological Processes, 17, 131151.CrossRefGoogle Scholar
Baartman, J. E., Masselink, R., Keesstra, S. D. & Temme, A. J. (2013). Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms, 38(12), 14571471.CrossRefGoogle Scholar
Baas, A. (2002). Chaos, fractals and self-organization in coastal geomorphology: Simulating dune landscapes in vegetated environments. Geomorphology, 48, 309328.CrossRefGoogle Scholar
Barling, R. D. (1992). Saturation zones and ephemeral gullies on arable land in south-eastern Australia. PhD thesis, University of Melbourne, VIC, Australia.Google Scholar
Baudry, J. & Merriam, G. (1988). Connectivity and connectedness: Functional versus structural patterns in landscapes. In Schreiber, K.-F., ed., Connectivity in Landscape Ecology. Proceedings of 2nd International Association for Landscape Ecology. Münstersche Geographische Arbeiten, 29, 2338.Google Scholar
Beven, K. (1997). Topmodel: A critique. Hydrological Processes, 11, 10691085.3.0.CO;2-O>CrossRefGoogle Scholar
Borselli, L., Cassi, P., & Torri, D. (2008). Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena, 75(3), 268277.CrossRefGoogle Scholar
Bourne, R. (1931). Regional survey and its relation to stocktaking of the agricultural resources of the British Empire. Oxford Forestry Memoirs, 13, 1618.Google Scholar
Bracken, L. J., & Croke, J. (2007). The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrological Processes, 21(13), 17491763.CrossRefGoogle Scholar
Bracken, L. J., Turnbull, L., Wainwright, J., & Bogaart, P. (2015). Sediment connectivity: A framework for understanding sediment transfer at multiple scales. Earth Surface Processes and Landforms, 40, 177188.CrossRefGoogle Scholar
Brierley, G., Fryirs, K., & Jain, V. (2006). Landscape connectivity: The geographic basis of geomorphic applications. Area, 38(2), 165174.CrossRefGoogle Scholar
Brierley, G. J. (2010). Landscape memory: The imprint of the past on contemporary landscape forms and processes. Area, 42, 7685.CrossRefGoogle Scholar
Brink, A. B., Mabbutt, J. A., Webster, R., & Beckett, P. H. T. (1966). Military Engineering Experimental Establishment, Christchurch, England. Report 940.Google Scholar
Brooks, C. P. (2003). A scalar analysis of landscape connectivity. Oikos, 102(2), 433439.Google Scholar
Brunsden, D., & Thornes, J. B. (1979). Landscape sensitivity and change. Transactions of the Institute of British Geographers, 4(4), 463484.CrossRefGoogle Scholar
Brunsden, D. (1993). The persistence of landforms. Zeitschrift für Geomorphologie, 93, 1328.Google Scholar
Brunsden, D. (2001). A critical assessment of the sensitivity concept in geomorphology. Catena, 42, 99123.CrossRefGoogle Scholar
Busch, G., Sutmoeller, J., Krüger, J., & Gerold, G. (1999). Regionalization of Runoff Formation by Aggregation of Hydrological Response Units: A Regional Comparison, IAHS Publication (International Association of Hydrological Sciences) 254., Wallingford: IAHS Press, 4551.Google Scholar
Calsamiglia, A., Fortesa, J., García‐Comendador, J., Lucas‐Borja, M. E., Calvo‐Cases, A., & Estrany, J. (2018). Spatial patterns of sediment connectivity in terraced lands: Anthropogenic controls of catchment sensitivity. Land Degradation & Development, 29(4), 11981210.CrossRefGoogle Scholar
Calsamiglia, A., Gago, J., Garcia‐Comendador, J., Bernat, J. F., Calvo‐Cases, A., & Estrany, J. (2020). Evaluating functional connectivity in a small agricultural catchment under contrasting flood events by using UAV. Earth Surface Processes and Landforms, 45(4), 800815.CrossRefGoogle Scholar
Calvo-Cases, A., Arnau-Rosalén, E., Boix-Fayos, C., Estrany, J., Roxo, M. J., & Symeonakis, E. (2021). Eco-geomorphological connectivity and coupling interactions at hillslope scale in drylands: Concepts and critical examples. Journal of Arid Environments, 186, 104418.CrossRefGoogle Scholar
Carr, M., Watkinson, D. A., Svendsen, J. C., Enders, E. C., Long, J. M., & Lindenschmidt, K. E. (2015). Geospatial modeling of the Birch River: Distribution of Carmine Shiner (Notropis percobromus) in Geomorphic Response Units (GRU). International Review of Hydrobiology, 100(5–6), 129140.CrossRefGoogle Scholar
Castelle, B., Ruessink, B. G., Bonneton, P., Marieu, V., Bruneau, N., & Price, T. D. (2010). Coupling mechanisms in double sandbar systems. Part 1: Patterns and physical explanation. Earth Surface Processes and Landforms, 35(4), 476486.CrossRefGoogle Scholar
Cerdà, A., Keesstra, S. D., Rodrigo-Comino, J., Novara, A., Pereira, P., Brevik, E., Giménez-Morera, A., et al.(2017). Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations. Journal of Environmental Management, 202, 268275.CrossRefGoogle ScholarPubMed
Chin, A., Florsheim, J. L., Wohl, E., & Collins, B. D. (2014). Feedbacks in human-landscape systems. Environmental Management, 53(1), 2841.CrossRefGoogle ScholarPubMed
Chorley, R. J. (1962). Geomorphology and General Systems Theory. USGS Professional Paper 500-B. Washington, DC: United States Government Printing Office.CrossRefGoogle Scholar
Chorley, R. J., & Kennedy, B. A. (1971). Physical Geography: A Systems Approach. London: Prentice-Hall.Google Scholar
Christian, C. S., & Stewart, G. A. (1953). General report of the survey of the Katharine-Darwin region 1946, Land Research Series No. 1. CSIRO Australia, Melbourne.Google Scholar
CoCo, G., & Murray, A. B. (2007). Patterns in the sand: From forcing templates to self-organization. Geomorphology, 91, 271290.CrossRefGoogle Scholar
Coulthard, T. J., & Van De Wiel, M. J. (2017). Modelling long term basin scale sediment connectivity, driven by spatial land use changes. Geomorphology, 277, 265281.CrossRefGoogle Scholar
Croke, J., Mockler, S., Fogarty, P., & Takken, I. (2005). Sediment concentration changes in runoff pathways from a forest road network and the resultant spatial pattern of catchment connectivity. Geomorphology, 68(3–4), 257268.CrossRefGoogle Scholar
Cucchiaro, S., Cazorzi, F., Marchi, L., Crema, S., Beinat, A., & Cavalli, M. (2019). Multi-temporal analysis of the role of check dams in a debris-flow channel: Linking structural and functional connectivity. Geomorphology, 345, 106844.CrossRefGoogle Scholar
D’Alpaos, A., Lanzoni, S., Marani, M., & Rinaldo, A. (2007). Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics. Journal of Geophysical Research: Earth Surface, 112(F1). https://doi.org/10.1029/2006JF000537Google Scholar
Einstein, H. A. (1950). The Bed-Load Function for Sediment Transportation in Open Channel Flows. USDA, Soil Conservation Service Tech. Bull., 1026, Washington, DC: US Department of Agriculture.Google Scholar
Flügel, W. A. (1995). Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrological Processes, 9, 423436.CrossRefGoogle Scholar
Fryirs, K. A., Brierley, G. J., Preston, N. J., & Kasai, M. (2007). Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, 70(1), 4967.CrossRefGoogle Scholar
Fryirs, K. A. (2017). River sensitivity: A lost foundation concept in fluvial geomorphology. Earth Surface Processes and Landforms, 42(1), 5570.CrossRefGoogle Scholar
Furbish, D. J., Haff, P. K., Roseberry, J. C., & Schmeeckle, M. W. (2012). A probabilistic description of the bed load sediment flux: 1. Theory. Journal of Geophysical Research: Earth Surface, 117(F3), F03031.Google Scholar
Gregory, K. J., & Lewin, J. (2015). Making concepts more explicit for geomorphology. Progress in Physical Geography, 39(6), 711727.CrossRefGoogle Scholar
Harrison, S. (2001). On reductionism and emergence in geomorphology. Transactions of the Institute of British Geographers, 26, 327339.CrossRefGoogle Scholar
Harvey, A. M. (2002). Effective timescales of coupling within fluvial systems. Geomorphology, 44, 175201.CrossRefGoogle Scholar
Heckmann, T., & Schwanghart, W. (2013). Geomorphic coupling and sediment connectivity in an alpine catchment – Exploring sediment cascades using graph theory. Geomorphology, 182, 89103.CrossRefGoogle Scholar
Heckmann, T., Cavalli, M., Cerdan, O., Foerster, S., Javaux, M., Lode, E., Smetanová, A., Vericat, D., & Brardinoni, F. (2018). Indices of sediment connectivity: Opportunities, challenges and limitations. Earth-Science Reviews, 187, 77108.CrossRefGoogle Scholar
Hewlett, J. D., & Hibbert, A. R. (1967). Factors affecting the response of small watersheds to precipitation in humid areas. In Proceedings of 1st International Symposium on Forest Hydrology, pp. 275–253.Google Scholar
Holling, C. S. (2001). Understanding the complexity of economic, ecological, and social systems. Ecosystems, 4, 390405.CrossRefGoogle Scholar
Hooke, J. M. (2003). Coarse sediment connectivity in river channel systems: A conceptual framework and methodology. Geomorphology, 56, 7994.CrossRefGoogle Scholar
Keesstra, S. D., van Huissteden, J., Vandenberghe, J., Van Dam, O., de Gier, J., & Pleizier, I. D. (2005). Evolution of the morphology of the river Dragonja (SW Slovenia) due to land-use changes. Geomorphology, 69, 191207.CrossRefGoogle Scholar
Keesstra, S. D., van Dam, O., Verstraeten, G., & van Huissteden, J. (2009). Changing sedimentgeneration due to natural reforestation in the Dragonja catchment, SW Slovenia. Catena, 78, 6071.CrossRefGoogle Scholar
Keesstra, S., Nunes, J. P., Saco, P., Parsons, T., Pöppl, R., Masselink, R., & Cerdà, A. (2018). The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Science of the Total Environment, 644, 15571572.CrossRefGoogle ScholarPubMed
King, C. A. (1970). Feedback relationships in geomorphology. Geografiska Annaler: Series A, Physical Geography, 52(3–4), 147159.CrossRefGoogle Scholar
Kirkby, M. J., Bracken, L. J., & Reaney, S. (2002). The influence of landuse, soils and topography on the delivery of hillslope runoff to channels in SE Spain. Earth Surface Landforms and Processes, 27, 14591473.CrossRefGoogle Scholar
Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., & Saugy, J. N. (2017). Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology, 277, 210227.CrossRefGoogle Scholar
Larsen, L. G., Choi, J., Nungesser, M. K., & Harvey, J. W. (2012). Directional connectivity in hydrology and ecology. Ecological Applications, 22, 22042220.CrossRefGoogle ScholarPubMed
Lexartza-Artza, I., & Wainwright, J. (2009). Hydrological connectivity: Linking concepts with practical implications. Catena, 79(2), 146152.CrossRefGoogle Scholar
Lisenby, P. E., Fryirs, K. A., & Thompson, C. J. (2020). River sensitivity and sediment connectivity as tools for assessing future geomorphic channel behavior. International Journal of River Basin Management, 18(3), 279293.CrossRefGoogle Scholar
Llena, M., Vericat, D., Cavalli, M., Crema, S., & Smith, M. W. (2019). The effects of land use and topographic changes on sediment connectivity in mountain catchments. Science of the Total Environment, 660, 899912.CrossRefGoogle ScholarPubMed
Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2), 130141.2.0.CO;2>CrossRefGoogle Scholar
Luetzenburg, G., Bittner, M., Calsamiglia, A., Estrany, J., & Pöppl, R. (2020). Climate and land use change effects on soil erosion in two small 1 agricultural catchment systems: Fugnitz – Austria, Can Revull – Spain. Science of the Total Environment, 704, 135389.CrossRefGoogle Scholar
Mabbutt, J. A. (1968). Review of concepts of land classification. In Stewart, G. A., ed., Land Evaluation. Melbourne: Macmillan of Australia, pp. 1128.Google Scholar
Magilligan, F. J., Roberts, M. O., Marti, M., & Renshaw, C. E. (2021). The impact of run-of-river dams on sediment longitudinal connectivity and downstream channel equilibrium. Geomorphology, 376, 107568.CrossRefGoogle Scholar
Mancini, D., & Lane, S. N. (2020). Changes in sediment connectivity following glacial debuttressing in an Alpine valley system. Geomorphology, 352, 106987.CrossRefGoogle Scholar
Marchi, L., Comiti, F., Crema, S., & Cavalli, M. (2019). Channel control works and sediment connectivity in the European Alps. Science of the Total Environment, 668, 389399.CrossRefGoogle ScholarPubMed
Meade, R. H. (1982). Sources, sinks and storage of river sediment in the Atlantic drainage of the United States. The Journal of Geology, 90, 235252.CrossRefGoogle Scholar
Messenzehl, K., Hoffmann, T., & Dikau, R. (2014). Sediment connectivity in the high-alpine valley of Val Müschauns, Swiss National Park – Linking geomorphic field mapping with geomorphometric modelling. Geomorphology, 221, 215229.CrossRefGoogle Scholar
Metzger, J. P., & Décamps, H. (1997). The structural connectivity threshold: An hypothesis in conservation biology at the landscape scale. Acta Oecologica, 18(1), 112.CrossRefGoogle Scholar
Nunes, J. P., Seixas, J., Keizer, J. J., & Ferreira, A. J. D. (2009). Sensitivity of runoff and soil erosion to climate change in two Mediterranean watersheds. Part II: Assessing impacts from changes in storm rainfall, soil moisture and vegetation cover. Hydrological Processes, 23(8), 12121220.CrossRefGoogle Scholar
Okin, G. S., Parsons, A. J., Wainwright, J., Herrick, J. E., Bestelmeyer, B. T., Peters, D. C., & Fredrickson, E. L. (2009). Do changes in connectivity explain desertification? BioScience, 59(3), 237244.CrossRefGoogle Scholar
Okin, G. S., Moreno-de-las-Heras, M., Saco, P. M., Throop, H. L., Vivoni, E. R., Parsons, A. J., Wainwright, J., & Peters, D. P. C. (2015). Connectivity in dryland landscapes: Shifting concepts of spatial interactions. Frontiers in Ecology and the Environment, 13, 2027CrossRefGoogle Scholar
Ondráčková, L., & Máčka, Z. (2019). Geomorphic (dis) connectivity in a middle‐mountain context: Human interventions in the landscape modify catchment‐scale sediment cascades. Area, 51(1), 113125.CrossRefGoogle Scholar
Parsons, A. J., Wainwright, J., Powell, D. M., Kaduk, J., & Brazier, R. E. (2004). A conceptual model for determining soil erosion by water. Earth Surface Processes and Landforms, 29(10), 12931302.CrossRefGoogle Scholar
Parsons, A. J., Brazier, R. E., Wainwright, J., & Powell, D. M. (2006). Scale relationships in hillslope runoff and erosion. Earth Surface Processes and Landforms, 31, 13841393.CrossRefGoogle Scholar
Passalacqua, P. (2017). The Delta connectome: A network-based framework for studying connectivity in river deltas. Geomorphology, 277, 5062.CrossRefGoogle Scholar
Pearson, S. G., van Prooijen, B. C., Elias, E. P., Vitousek, S., & Wang, Z. B. (2020). Sediment connectivity: A framework for analyzing coastal sediment transport pathways. Journal of Geophysical Research: Earth Surface, 125(10), e2020JF005595.Google Scholar
Pöppl, R. E., Keesstra, S. D., & Maroulis, J. (2017). Conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems. Geomorphology, 277, 237250.CrossRefGoogle Scholar
Pöppl, R. E., & Parsons, A. J. (2018). The geomorphic cell: A basis for studying connectivity. Earth Surface Processes and Landforms, 43(5), 11551159.CrossRefGoogle Scholar
Pöppl, R. E., Coulthard, T., Keesstra, S. D., & Keiler, M. (2019). Modeling the impact of dam removal on channel evolution and sediment delivery in a multiple dam setting. International Journal of Sediment Research, 34(6), 537549.CrossRefGoogle Scholar
Pöppl, R.E., Fryirs, K.A., Tunnicliffe, J., Brierley, G.J. Managing sediment (dis) connectivity in fluvial systems. Science of the Total Environment 736, 139627Google Scholar
Prigogine, I., & Nicolis, G. (1977). Self-Organization in Non-Equilibrium Systems. WileyGoogle Scholar
Pringle, C. M. (2001). Hydrologic connectivity and the management of biological reserves: A global perspective. Ecological Applications, 11, 981998.CrossRefGoogle Scholar
Richards, K. (1999). The magnitude-frequency concept in fluvial geomorphology: A component of a degenerating research programme? Zeitschrift für Geomorphologie, 115, 118.Google Scholar
Richards, A. (2002). Complexity in physical geography. Geography, 87(2), 99107.CrossRefGoogle Scholar
Rodrigo-Comino, J., Lucas Borja, M., Bertalan, L., & Cerdà, A. (2020). Integrating in situ measurements of an index of connectivity to assess soil erosion processes in vineyards. Hydrological Sciences Journal, 65(4), 671679.CrossRefGoogle Scholar
Saco, P. M., & Moreno‐de las Heras, M. (2013). Ecogeomorphic coevolution of semiarid hillslopes: Emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes. Water Resources Research, 49(1), 115126.CrossRefGoogle Scholar
Schopper, N., Mergili, M., Frigerio, S., & Cavalli, M., Pöppl, R. (2019). Analysis of lateral sediment connectivity and its connection to debris flow intensity patterns at different return periods in the Fella River system in northeastern Italy. Science of the Total Environment, 658, 15861600.CrossRefGoogle ScholarPubMed
Schumm, S. A., & Lichty, R. W. (1965). Time, space, and causality in geomorphology. American Journal of Science, 263, 110119.CrossRefGoogle Scholar
Schumm, S. A. (1973). Geomorphic thresholds and the complex response of drainage systems. In Morisawa, M., ed., Fluvial Geomorphology. Binghampton: State University of New York, pp. 299310.Google Scholar
Singh, M., Tandon, S. K., & Sinha, R. (2017). Assessment of connectivity in a water‐stressed wetland (Kaabar Tal) of Kosi‐Gandak interfan, north Bihar Plains, India. Earth Surface Processes and Landforms, 42(13), 19821996.CrossRefGoogle Scholar
Singh, M., Sinha, R., & Tandon, S. K. (2021). Geomorphic connectivity and its application for understanding landscape complexities: A focus on the hydro‐geomorphic systems of India. Earth Surface Processes and Landforms, 46(1), 110130.CrossRefGoogle Scholar
Souza, J. O., Correa, A. C., & Brierley, G. J. (2016). An approach to assess the impact of landscape connectivity and effective catchment area upon bedload sediment flux in Saco Creek Watershed, Semiarid Brazil. Catena, 138, 1329.CrossRefGoogle Scholar
Taylor, P. D., Fahrig, L., Henein, K., & Merriam, G. (1993). Connectivity is a vital element of landscape structure. Oikos, 68(3), 571573.CrossRefGoogle Scholar
Thomaz, E. L., & Peretto, G. T. (2016). Hydrogeomorphic connectivity on roads crossing in rural headwaters and its effect on stream dynamics. Science of the Total Environment, 550, 547555.CrossRefGoogle ScholarPubMed
Trimble, S. W. (1983). A sediment budget for Coon Creek Basin in the Driftless Area, Wisconsin, 1853–1977. American Journal of Science, 283, 454474.CrossRefGoogle Scholar
Turnbull, L., Wainwright, J., & Brazier, R. E. (2008). A conceptual framework for understanding semi‐arid land degradation: Ecohydrological interactions across multiple‐space and time scales. Ecohydrology: Ecosystems, Land and Water Process Interactions, Ecohydrogeomorphology, 1(1), 2334.CrossRefGoogle Scholar
Turnbull-Lloyd, L., Parsons, A., Kininmonth, S., Pöppl, R. E., Huett, M., Keesstra, S. D., Tockner, K., Ioannides, A., & Masselink, R. (2018). Connectivity and complex systems: Learning from a multi-disciplinary perspective. Applied Network Science, 3(1), 149.Google Scholar
von Bertalanffy, L. (1976). General System Theory: Foundations, Development, Applications (rev. ed.). New York: George Braziller.Google Scholar
Wainwright, J., Parsons, A. J., Powell, D. M., & Brazier, R. (2001). A new conceptual framework for understanding and predicting erosion by water from hillslopes and catchments. In Ascough, J.C., Flanagan, D.C., eds., Soil Erosion for the 21st Century. St. Joseph, MI: American Society of Agricultural Engineers. pp. 607610.Google Scholar
Wainwright, J., Turnbull, L., Ibrahim, T. G., Lexartza-Artza, I., Thomton, S. F., & Brazier, R. E. (2011). Linking environmental regimes, space and time: Interpretations of structural and functional connectivity. Geomorphology, 126, 387404.CrossRefGoogle Scholar
Walling, D. E. (1983). The sediment delivery problem. Journal of Hydrology, 65, 209237.CrossRefGoogle Scholar
Ward, J. V. (1989). The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society, 8(1), 28.CrossRefGoogle Scholar
Ward, J. V. (1997). An expansive perspective of riverine landscapes: Pattern and process across scales. River Ecosystems, 6, 5260.Google Scholar
Wohl, E. (2017). Connectivity in rivers. Progress in Physical Geography, 41(3), 345362.CrossRefGoogle Scholar
Wohl, E., Brierley, G., Cadol, D., Coulthard, T., Covino, T., Fryirs, K., Grant, G., et al. (2019). Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms, 44(1), 416.CrossRefGoogle Scholar
Wolman, M. G., & Miller, J. P. (1960). Magnitude–frequency of forces in geomorphic processes. Journal of Geology, 68, 5474.CrossRefGoogle Scholar
Wooldridge, S. W. (1932). The cycle of erosion and the representation of relief. Scottish Geographical Magazine, 48, 3036.CrossRefGoogle Scholar
Xie, C., Cui, B., Xie, T., Yu, S., Liu, Z., Chen, C., Ning, Z., Wang, Q., Zou, Y., & Shao, X. (2020). Hydrological connectivity dynamics of tidal flat systems impacted by severe reclamation in the Yellow River Delta. Science of the Total Environment, 739, 139860.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Edited by Ronald Pöppl, BOKU University Vienna, Anthony Parsons, University of Sheffield, Saskia Keesstra, Wageningen Universiteit, The Netherlands
  • Book: Connectivity in Geomorphology
  • Online publication: 10 April 2025
  • Chapter DOI: https://doi.org/10.1017/9781108903196.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Edited by Ronald Pöppl, BOKU University Vienna, Anthony Parsons, University of Sheffield, Saskia Keesstra, Wageningen Universiteit, The Netherlands
  • Book: Connectivity in Geomorphology
  • Online publication: 10 April 2025
  • Chapter DOI: https://doi.org/10.1017/9781108903196.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Edited by Ronald Pöppl, BOKU University Vienna, Anthony Parsons, University of Sheffield, Saskia Keesstra, Wageningen Universiteit, The Netherlands
  • Book: Connectivity in Geomorphology
  • Online publication: 10 April 2025
  • Chapter DOI: https://doi.org/10.1017/9781108903196.002
Available formats
×