Skip to main content Accessibility help
×
Hostname: page-component-f554764f5-wjqwx Total loading time: 0 Render date: 2025-04-22T16:51:09.138Z Has data issue: false hasContentIssue false

15 - Coasts and Deltas

from Part IV - Managing Connectivity

Published online by Cambridge University Press:  10 April 2025

Ronald Pöppl
Affiliation:
BOKU University Vienna
Anthony Parsons
Affiliation:
University of Sheffield
Saskia Keesstra
Affiliation:
Wageningen Universiteit, The Netherlands
Get access

Summary

Coastal deltaic floodplains provide important ecosystem services such as trapping sediment, reducing storm surge, and processing riverine nutrients. These landscapes are at high risk due increasing rates of sea level rise, accelerated subsidence, extraction of resources from the subsurface, and extensive human interventions. Human interventions to preserve, sustain, or restore ecosystem services often aim at reversing disconnectivity that is responsible for degrading many coastal ecosystems as it prevents the natural distribution of water, solids, and solutes over the delta plain. Deltaic floodplains with tidal freshwater and estuarine wetlands can be defined by the elevation of the wetland platform that controls the frequency and duration of flooding (hydroperiod), an example of the feedback between structural (elevation) and functional (frequency and duration of flooding) connectivity elements and reflected in the resulting couplings among system’s variables (process connectivity). These processes are critical to maintaining the function of coastal deltaic floodplains in mitigating CO2 enrichment in atmosphere and reducing nutrient loading to coastal waters.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Amoros, C., & Bornette, G. (2002). Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology, 47(4): 761776.CrossRefGoogle Scholar
Asselman, N. E., & Middelkoop, H. (1995). Floodplain sedimentation: Quantities, patterns and processes. Earth Surface Processes and Landforms, 20(6), 481499.CrossRefGoogle Scholar
Bachand, P. A., & Horne, A. J. (1999). Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecological Engineering, 14(1–2), 1732.CrossRefGoogle Scholar
Barbier, E. B. (2015). Valuing the storm protection service of estuarine and coastal ecosystems. Ecosystem Services, 11, 3238.CrossRefGoogle Scholar
Barbier, E. B., Georgiou, I., Enchelmeyer, B., & Reed, D. J. (2013). The value of wetlands in protecting southeast Louisiana from hurricane storm surges. Plos One, 8(3): e58715.CrossRefGoogle ScholarPubMed
Bargu, S., Justic, D., White, J. R., Lane, R., Day, J., Paerl, H., & Raynie, R. (2019). Mississippi River diversions and phytoplankton dynamics in deltaic Gulf of Mexico estuaries: a review. Estuarine, Coastal and Shelf Science, 221, 3952.CrossRefGoogle Scholar
Baumann, R. H., Day, J. W., Jr., & Miller, C. A. (1984). Mississippi deltaic wetland survival: sedimentation versus coastal submergence. Science, 224, 10931095.CrossRefGoogle ScholarPubMed
Baustian, J. J., Mendelssohn, I. A., & Hester, M. W. (2012). Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Global Change Biology, 18, 33773382. doi:10.1111/j.1365-2486.2012.02792.xCrossRefGoogle Scholar
Bernard, R. J., Mortazavi, B., & Kleinhuizen, A. A. (2015). Dissimilatory nitrate reduction to ammonium (DNRA) seasonally dominates NO3 reduction pathways in an anthropogenically impacted sub-tropical coastal lagoon. Biogeochemistry, 125(1), 4764.CrossRefGoogle Scholar
Bevington, A. E., & Twilley, R. R. (2018). Island Edge Morphodynamics along a Chronosequence in a Prograding Deltaic Floodplain Wetland. Journal of Coastal Research, 34 (4), 806817.CrossRefGoogle Scholar
Bevington, A. E., Twilley, R. R., Sasser, C. E., & Holm, G. O. (2017). Contribution of river floods, hurricanes, and cold fronts to elevation change in a deltaic floodplain, northern Gulf of Mexico, USA. Estuarine, Coastal and Shelf Science, 191, 188200. doi:10.1016/j.ecss.2017.04.010CrossRefGoogle Scholar
Bianchi, T. S., & Allison, M. A. (2009). Large-river delta-front estuaries as natural “recorders” of global environmental change. Proceedings of the National Academy of Sciences, 106(20), 80858092.CrossRefGoogle ScholarPubMed
Blair, N. E., & Aller, R. C. (2012). The fate of terrestrial organic carbon in the marine environment. Annual Review of Marine Science, 4, 401423. doi:10.1146/annurev-marine-120709-142717CrossRefGoogle ScholarPubMed
Blum, M. D., & Roberts, H. H. (2009). Drowning of the Mississippi delta due to insufficient sediment supply and global sea-level rise. Nature Geoscience, 2(7), 488491. doi:10.1038/ngeo553CrossRefGoogle Scholar
Blum, M. D., & Roberts, H. H. (2012). The Mississippi delta region: past, present, and future. Annual Review of Earth and Planetary Sciences, 40, 655683.CrossRefGoogle Scholar
Boesch, D. F., Josselyn, M. N., Mehta, A. J., Morris, J. T., Nuttle, W. K., Simenstad, C. A., & Swift, D. J. P. (1994). Scientific assessment of coastal wetland loss, restoration and management in Louisiana. Journal of Coastal Research, Special issue No 20, 1–103.Google Scholar
Broussard, W., & Turner, R. E. (2009). A century of changing land‐use and water‐quality relationships in the continental US. Frontiers in Ecology and the Environment, 7(6), 302307.CrossRefGoogle Scholar
Bryan, K. R., Nardin, W., Mullarney, J. C., & Fagherazzi, S. (2016). The role of cross-shore tidal dynamics in controlling intertidal sediment exchange in mangroves in Cù Lao Dung, Vietnam. Continental Shelf Research 147, 128143, ISSN 0278-4343, https://doi.org/10.1016/j.csr.2017.06.014CrossRefGoogle Scholar
Caffey, R. H., Wang, H., & Petrolia, D. R. (2014). Trajectory economics: Assessing the flow of ecosystem services from coastal restoration. Ecological Economics, 100, 7484.CrossRefGoogle Scholar
Cahoon, D. R. (2006). A review of major storm impacts on coastal wetland elevations. Estuaries and Coasts, 29(6A), 889898.CrossRefGoogle Scholar
Cahoon, D. R., White, D. A., & Lynch, J. C. (2011). Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta. Geomorphology, 131, 5768. doi:10.1016/j.geomorph.2010.12.002CrossRefGoogle Scholar
Carney, J. A., Twilley, R. R., Agre, C., Hird, J., Georgiou, I., & Shelden, J.. (2018). The giving delta. In Mossop, E. (Ed.), Sustainable Coastal Design and Planning, pp. 239254. CRC Press, Boca Roton, FL.CrossRefGoogle Scholar
Christensen, A., Twilley, R. R., Willson, C. S., & Castañeda-Moya, E. (2020). Simulating hydrological connectivity and water age within a coastal deltaic floodplain of the Mississippi river delta. Estuarine, Coastal and Shelf Science, 245, 106995.CrossRefGoogle Scholar
Coastal Protection and Restoration Authority. (2017). Louisiana’s Comprehensive Master Plan for a Sustainable Coast (Technical Report). Coastal Protection and Restoration Authority of Louisiana. Baton Rouge, LA.Google Scholar
Cornwell, J. C., Kemp, W. M., & Kana, T. M. (1999). Denitrification in coastal ecosysems: methods, environmental controls, and ecosystem level controls, a review. Aquatic Ecology, 33, 4154.CrossRefGoogle Scholar
Covino, T. (2017). Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks. Geomorphology, 277, 133144.CrossRefGoogle Scholar
Das, A., Justic, D., Inoue, M., Hoda, A., Huang, H., & Park, D. (2012). Impacts of Mississippi River diversions on salinity gradients in a deltaic Louisiana estuary: Ecological and management implications. Estuarine, Coastal and Shelf Science, 111, 1726. doi:10.1016/j.ecss.2012.06.005CrossRefGoogle Scholar
Day Jr., J. W., Boesch, D. F., Clairain, E. J., Kemp, G. P., Laska, S. D., Mitsch, W. J., & Whigham, D. F. (2007). Restoration of the Mississippi delta: Lessons from Hurricanes Katrina and Rita. Science, 315, 16791684. doi:10.1126/science.1137030Google ScholarPubMed
Day Jr., J. W., Ko, J.-Y. Y., Rybczyk, J., Sabins, D., Bean, R., Berthelot, G., Twilley, R. (2004). The use of wetlands in the Mississippi delta for wastewater assimilation: A review. Ocean & Coastal Management, 47, 671691. doi:10.1016/J.Ocecoaman.2004.12.007Google Scholar
Day, J. W., Cable, J. E., Cowan, J. H., DeLaune, R., de Mutsert, K., Fry, B., Wissel, B. (2009). The impacts of pulsed reintroduction of river water on a Mississippi delta coastal basin. Journal of Coastal Research, 10054, 225243. doi:10.2112/SI54-015.1CrossRefGoogle Scholar
Day, J. W., Kemp, G. P., Reed, D. J., Cahoon, D. R., Boumans, R. M., Suhayda, J. M., & Gambrell, R. (2011). Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise. Ecological Engineering, 37, 229240. doi:10.1016/j.ecoleng.2010.11.021CrossRefGoogle Scholar
Day, J. W., Lane, R. R., D’Elia, C. F., Wiegman, A. R. H., Rutherford, J. S., Shaffer, G. P., Brantley, C. G., & Kemp, G. P. (2018). Large infrequently operated river diversions for Mississippi delta restoration. Mississippi Delta Restoration: Pathways to a Sustainable Future, 2018: 113133.CrossRefGoogle Scholar
de Mutsert, K., Lewis, K., Milroy, S., Buszowski, J., & Steenbeek, J. (2017). Using ecosystem modeling to evaluate trade-offs in coastal management: Effects of large-scale river diversions on fish and fisheries. Ecological Modelling, 360, 1426.CrossRefGoogle Scholar
DeLaune, R., Sasser, C., Evers-Hebert, E., White, J., & Roberts, H. (2016). Influence of the Wax Lake Delta sediment diversion on aboveground plant productivity and carbon storage in deltaic island and mainland coastal marshes. Estuarine, Coastal and Shelf Science, 177, 8389.CrossRefGoogle Scholar
DeLaune, R. D., Smith, C. J., Patrick, W. H., & Roberts, H. H. (1987). Rejuvenated marsh and bay-bottom accretion on the rapidly subsiding coastal plain of U.S. Gulf Coast: A second-order effect of the emerging Atchafalaya Delta. Estuarine, Costal and Shelf Science, 25, 381389.CrossRefGoogle Scholar
Deleersnijder, E., Campin, J.-M., & Delhez, E. J. (2001). The concept of age in marine modelling: I. Theory and preliminary model results. Journal of Marine Systems, 28(3–4), 229267.CrossRefGoogle Scholar
Delhez, E. J., Campin, J.-M., Hirst, A. C., & Deleersnijder, E. (1999). Toward a general theory of the age in ocean modelling. Ocean Modelling, 1(1), 1727.CrossRefGoogle Scholar
Dettmann, E. H. (2001). Effect of water residence time on annual export and denitrification of Nitrogen in Estuaries: A model analysis. Estuaries, 24, 481. doi:10.2307/1353250CrossRefGoogle Scholar
Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926929.CrossRefGoogle ScholarPubMed
Edmonds, D. A., Paola, C., Hoyal, D. C., & Sheets, B. A. (2011). Quantitative metrics that describe river deltas and their channel networks. Journal of Geophysical Research: Earth Surface, 116(F4).CrossRefGoogle Scholar
Edmonds, D. A., & Slingerland, R. L. (2010). Significant effect of sediment cohesion on delta morphology. Nature Geoscience, 3, 105109. doi:10.1038/ngeo730CrossRefGoogle Scholar
Edmonds, D. A., Caldwell, R. L., Brondizio, E. S. & Mo Siani, S. (2020). Coastal flooding will disproportionately impact people on river deltas. Nature Geoscience, 11, 18, https://doi.org/10.1038/s41467-020-18531-4Google ScholarPubMed
Elsey-Quirk, T., Graham, S. A., Mendelssohn, I. A., Snedden, G., Day, J. W., Twilley, R., Lane, R. (2019). Mississippi river sediment diversions and coastal wetland sustainability: Synthesis of responses to freshwater, sediment, and nutrient inputs. Estuarine, Coastal and Shelf Science, 221, 170183.CrossRefGoogle Scholar
Ensign, S., Siporin, K., Piehler, M., Doyle, M., & Leonard, L. (2013). Hydrologic versus biogeochemical controls of denitrification in tidal freshwater wetlands. Estuaries and Coasts, 36, 519532.CrossRefGoogle Scholar
Everett, T., Chen, Q., Karimpour, A., & Twilley, R. (2019). Quantification of swell energy and its impact on wetlands in a deltaic estuary. Estuaries and Coasts, 42, 6884. https://doi.org/10.1007/s12237-018-0454-zCrossRefGoogle Scholar
Eyre, B. D., & Ferguson, A. J. P. (2009). Denitrification efficiency for defining critical loads of carbon in shallow coastal ecosystems. In Eutrophication in Coastal Ecosystems: Towards better understanding and management strategies Selected Papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark, pp. 137146. Springer, Netherlands.CrossRefGoogle Scholar
Fagherazzi, S., Edmonds, D. A., Nardin, W., Leonardi, N., Canestrelli, A., Falcini, F., & Slingerland, R. L. (2015). Dynamics of river mouth deposits. Reviews of Geophysics, 53(3), 642672.CrossRefGoogle Scholar
Gagliano, S. M., & Van Beek, J. L. (1975). An approach to multiuse management in the Mississippi Delta system. Houston Geological Society, Deltas: Models for Exploration.Google Scholar
Gardner, W. S., McCarthy, M. J., An, S., Sobolev, D., Sell, K. S., & Brock, D. (2006). Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries. Limnology and Oceanography, 51(1), 558568.CrossRefGoogle Scholar
Geleynse, N., Hiatt, M., Sangireddy, H., & Passalacqua, P. (2015). Identifying environmental controls on the shoreline of a natural river delta. Journal of Geophysical Research F: Earth Surface 120, 877893.CrossRefGoogle Scholar
Goolsby, D. A., Battaglin, W. A., Aulenbach, B. T., & Hooper, R. P. (2000). Nitrogen flux and sources in the Mississippi River Basin. Science of The Total Environment 248(2–3), 7586. doi:10.1016/S0048-9697(99)00532-XCrossRefGoogle ScholarPubMed
Gosselink, J. G., Coleman, J. M., & StewartJr, R. E. (1998). Coastal Louisiana. Status and Trends of the Nation’s Biological Resources, 2, 385436.Google Scholar
Grimsditch, G., Alder, J., Nakamura, T., Kenchington, R., & Tamelander, J. (2013). The blue carbon special edition – Introduction and overview. Ocean & Coastal Management, 83, 14. doi:10.1016/j.ocecoaman.2012.04.020CrossRefGoogle Scholar
Hanegan, K. & Georgiou, I. (2015). Tidal modulated flow and sediment flux through Wax Lake Delta distributary channels: Implications for delta development. Proceedings of IAHS, 367, 391398, https://doi.org/10.5194/piahs-367-391-2015CrossRefGoogle Scholar
Hedges, J. I., & Keil, R. G. (1995). Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, 49, 81115. doi:10.1016/0304-4203(95)00008-FCrossRefGoogle Scholar
Heiler, G., Hein, T., Schiemer, F., & Bornette, G. (1995). Hydrological connectivity and flood pulses as the central aspects for the integrity of a river‐floodplain system. Regulated Rivers: Research & Management, 11, 351361. doi:10.1002/rrr.3450110309CrossRefGoogle Scholar
Henry, K. M., & Twilley, R. R. (2014). Nutrient biogeochemistry during the early stages of delta development in the Mississippi river deltaic plain. Ecosystems, 17, 327343.CrossRefGoogle Scholar
Hiatt, M., & Passalacqua, P. (2015). Hydrological connectivity in river deltas: The first‐order importance of channel‐island exchange. Water Resources Research, 51(4), 22642282.CrossRefGoogle Scholar
Hiatt, M., & Passalacqua, P. (2017), What controls the transition from confined to unconfined flow? Analysis of hydraulics in a coastal river delta. Journal of Hydraulic Engineering, 143, 6, doi:10.1061/(ASCE)HY.1943-7900.0001309CrossRefGoogle Scholar
Hiatt, M., Castañeda‐Moya, E., Twilley, R., Hodges, B. R., & Passalacqua, P. (2018). Channel‐island connectivity affects water exposure time distributions in a coastal river delta. Water Resources Research, 54(3), 22122232.CrossRefGoogle Scholar
Holmquist, J. R., Windham-Myers, L., Bliss, N., Crooks, S., Morris, J. T., Megonigal, J. P., Drexler, J. (2018). Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States. Scientific Reports, 8(1), 116.Google ScholarPubMed
Horstman, Erik M., Dohmen-Janssen, C. Marjolein, & Hulscher, Suzanne J. M. H. (2013). Flow routing in mangrove forests: A field study in Trang province, Thailand. Continental Shelf Research, 71, 5267, ISSN 0278-4343, https://doi.org/10.1016/j.csr.2013.10.002CrossRefGoogle Scholar
Howarth, R. W., Sharpley, A., & Walker, D. (2002). Sources of nutrient to coastal waters in the United States (implications for achieving coastal water quality goals). Estuaries, 25, 656676. doi:10.1007/BF02804898CrossRefGoogle Scholar
Hu, Kelin, Chen, Qin, & Wang, Hongqing. (2015). A numerical study of vegetation impact on reducing storm surge by wetlands in a semi-enclosed estuary. Coastal Engineering, 95, 6676, ISSN 0378-3839, https://doi.org/10.1016/j.coastaleng.2014.09.008CrossRefGoogle Scholar
Islam, S. (2016). Deltaic floodplains development and wetland ecosystems management in the Ganges–Brahmaputra–Meghna Rivers Delta in Bangladesh. Sustainable Water Resources Management, 2(3): 237256.CrossRefGoogle Scholar
Junk, W. J., Bayley, P., & Sparks, R. (1989). The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 106, 110127. doi:10.1371/journal.pone.0028909Google Scholar
Kadlec, R., & Wallace, S. (2008). Treatment Wetlands, Second Edition. doi:10.1201/9781420012514CrossRefGoogle Scholar
Kadlec, R. H. (2010). Nitrate dynamics in event-driven wetlands. Ecological Engineering, 36(4), 503516. doi:10.1016/j.ecoleng.2009.11.020CrossRefGoogle Scholar
Kadlec, R. H. and Knight, , R.L. (1996). Treatment Wetlands. CRC Press LLC, Boca Raton, FL. ISBN 0-87371-930-1. 893 pages.Google Scholar
Kadlec, R. H., & Reddy, K. (2001). Temperature effects in treatment wetlands. Water environment research, 73(5), 543557.CrossRefGoogle ScholarPubMed
Kaushal, S. S., Groffman, P. M., Mayer, P. M., Striz, E., & Gold, A. J. (2008). Effects of stream restoration on denitrification in an urbanizing watershed. Ecological Applications, 18(3), 789804.CrossRefGoogle Scholar
Kelly-Gerreyn, B., Hydes, D., Trimmer, M., & Nedwell, D. (1999). Calibration of an early diagenesis model for high nitrate, low reactive sediments in a temperate latitude estuary (Great Ouse, UK). Marine Ecology Progress Series, 177, 3750.CrossRefGoogle Scholar
Kelly-Gerreyn, B. A., Trimmer, M., & Hydes, D. J. (2001). A diagenetic model discriminating denitrification and dissimilatory nitrate reduction to ammonium in a temperate estuarine sediment. Marine Ecology Progress Series, 220, 3346. doi:10.3354/meps220033CrossRefGoogle Scholar
Klocker, C. A., Kaushal, S. S., Groffman, P. M., Mayer, P. M., & Morgan, R. P. (2009). Nitrogen uptake and denitrification in restored and unrestored streams in urban Maryland, USA. Aquatic sciences, 71(4), 411424.CrossRefGoogle Scholar
Lane, R. R., Madden, C. J., Day, J. W., Jr., & Solet, D. J. (2011). Hydrologic and nutrient dynamics of a coastal bay and wetland receiving discharge from the Atchafalaya River. Hydrobiologia, 658(1), 5566. doi:10.1007/s10750-010-0468-4CrossRefGoogle Scholar
Li, S., Christensen, A., & Twilley, R. R. (2020). Benthic fluxes of dissolved oxygen and nutrients across hydrogeomorphic zones in a coastal deltaic floodplain within the Mississippi River delta plain. Biogeochemistry, 149, 115140.CrossRefGoogle Scholar
Li, S., & Twilley, R. R. (2021). Nitrogen dynamics of inundated sediments in an emerging coastal deltaic floodplain in mississippi river delta using isotope pairing technique to test response to nitrate enrichment and sediment organic matter. Estuaries and Coasts, 44:18991915.CrossRefGoogle Scholar
Li, S., Twilley, R. R., & Hou, A. (2021). Heterotrophic nitrogen fixation in response to nitrate loading and sediment organic matter in an emerging coastal deltaic floodplain within the Mississippi River Delta plain. Limnology and Oceanography, 66(5), 19611978.CrossRefGoogle Scholar
Liu, K., Chen, Q., Hu, K., Xu, K., & Twilley, R. R. (2018). Modeling hurricane-induced wetland-bay and bay-shelf sediment fluxes. Coastal Engineering 135: 7790.CrossRefGoogle Scholar
Ma, H., Larsen, L. G., & Wagner, R. W. (2018). Ecogeomorphic feedbacks that grow deltas. Journal of Geophysical Research: Earth Surface, 123(12), 32283250.CrossRefGoogle Scholar
Madden, C. J., Day, J. W., Jr., & Randall, J. M. (1988). Freshwater and marine coupling in estuaries of the Mississippi River deltaic plain. Limnology and Oceanography, 33(4), 9821004.Google Scholar
Martin, J. F., & Reddy, K. R. (1997). Interaction and spatial distribution of wetland nitrogen processes. Ecological Modelling, 105, 121. doi:10.1016/S0304-3800(97)00122-1CrossRefGoogle Scholar
McKee, K. L., & Cherry, J. A. (2009). Hurricane Katrina sediment slowed elevation loss in subsiding brackish marshes of the Mississippi River Delta. Wetlands, 29(1), 215.CrossRefGoogle Scholar
McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Bjork, M., Duarte, C. M., & Silliman, B. R. (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552560. doi:10.1890/110004CrossRefGoogle Scholar
MelanconJr, E., Soniat, T., Cheramie, V., Dugas, R., Barras, J., & Lagarde, M. (1998). Oyster resource zones of the Barataria and Terrebonne estuaries of Louisiana. Journal of Shellfish Research, 17(4), 11431148.Google Scholar
Mendelssohn, I. A., & Kuhn, N. L. (2003). Sediment subsidy: effects on soil-plant responses in a rapidly submerging coastal salt marsh. Ecological Engineering, 21(2–3), 115128. doi:10.1016/j.ecoleng.2003.09.006CrossRefGoogle Scholar
Mitsch, W. J., Day, J. W., Zhang, L., & Lane, R. R. (2005). Nitrate-nitrogen retention in wetlands in the Mississippi River Basin. Ecological Engineering, 24, 267278.CrossRefGoogle Scholar
Morris, J. T. (2006). Competition among marsh macrophytes by means of geomorphological displacement in the intertidal zone. Estuarine, Coastal and Shelf Science, 69(3–4), 395402. http://dx.doi.org/10.1016/j.ecss.2006.05.025CrossRefGoogle Scholar
Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B., & Cahoon, D. R. (2002). Responses of coastal wetlands to rising sea level. Ecology, 83(10), 28692877. doi:10.2307/3072022CrossRefGoogle Scholar
Morton, R. A., & Barras, J. A. (2011). Hurricane Impacts on Coastal Wetlands: A Half-Century Record of Storm-Generated Features from Southern Louisiana. Journal of Coastal Research, 275, 2743. doi:10.2112/JCOASTRES-D-10-00185.1CrossRefGoogle Scholar
Nardin, W., & Edmonds, D. A. (2014). Optimum vegetation height and density for inorganic sedimentation in deltaic marshes. Nature Geoscience, 7(10), 722.CrossRefGoogle Scholar
Nardin, W., Edmonds, D. A., & Fagherazzi, S. (2016). Influence of vegetation on spatial patterns of sediment deposition in deltaic islands during flood. Advances in Water Resources, 93, 236248.CrossRefGoogle Scholar
Nardin, W., Lera, S., & Nienhuis, J. (2020) Effect of offshore waves and vegetation on the sediment budget in the Virginia Coast Reserve (VA). Earth Surface Processes and Landforms, 45, 30553068. https://doi.org/10.1002/esp.4951CrossRefGoogle Scholar
Noe, G. B., & Hupp, C. R. (2005). Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic Coastal Plain rivers, USA. Ecological Applications, 15(4), 11781190. doi:10.1890/04-1677CrossRefGoogle Scholar
Noe, G. B., Hupp, C. R., & Rybicki, N. B. (2013). Hydrogeomorphology Influences Soil Nitrogen and Phosphorus Mineralization in Floodplain Wetlands. Ecosystems, 16(1), 7594. doi:10.1007/s10021-012-9597-0CrossRefGoogle Scholar
Nyman, J. A., Crozier, C. R., & DeLaune, R. D. (1995). Roles and patterns of hurricane sedimentation in an estuarine marsh landscape. Estuarine, Coastal and Shelf Science, 40, 665679.CrossRefGoogle Scholar
Paerl, H. W. (2006). Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: Interactive effects of human and climatic perturbations. Ecological Engineering, 26, 4045.CrossRefGoogle Scholar
Paola, C., Twilley, R. R., Edmonds, D. A., Kim, W., Mohrig, D., Parker, G., & Voller, V. R. (2011). Natural Processes in Delta Restoration: Application to the Mississippi Delta. Annual Review of Marine Science, 3, 6791. doi:10.1146/annurev-marine-120709-142856CrossRefGoogle ScholarPubMed
Passalacqua, P. (2017). The Delta Connectome: A network-based framework for studying connectivity in river deltas. Geomorphology, 277, 5062. doi:10.1016/j.geomorph.2016.04.001CrossRefGoogle Scholar
Penland, S., Boyd, R., & Suter, J. R. (1988). Transgressive depositional systems of the Mississippi Delta plain; a model for barrier shoreline and shelf sand development. Journal of Sedimentary Research, 58(6), 932949.Google Scholar
Perez, B. C., Day, J. W., Jr., Rouse, L. J., Shaw, R. F., & Wang, M. (2000). Influence of Atchafalaya River discharge and winter frontal passage on suspended sediment concentration and flux in Fourleague Bay, Louisiana. Estuarine, Coastal and Shelf Science, 50, 271290.CrossRefGoogle Scholar
Perez, B. C., Day, J. W., Justic, D., & Twilley, R. R. (2003). Nitrogen and phosphorus transport between Fourleague Bay, LA, and the Gulf of Mexico: the role of winter cold fronts and Atchafalaya River discharge. Estuarine Coastal and Shelf Science, 57(5–6), 10651078. doi:10.1016/S0272-7714(03)00010-6CrossRefGoogle Scholar
Peyronnin, N. S., Caffey, R. H., Cowan, J. H., Justic, D., Kolker, A. S., Laska, S. B., Wilkins, J. G. (2017). Optimizing sediment diversion operations: Working group recommendations for integrating complex ecological and social landscape interactions. Water (Switzerland), 9. doi:10.3390/w9060368Google Scholar
Rabalais, N. N., Turner, R. E., Justić, D., Dortch, Q., Wiseman, W. J., & Gupta, B. K. S. (1996). Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries, 19(2), 386407.CrossRefGoogle Scholar
Rabalais, N. N., Turner, R. E., & Scavia, D. (2002). Beyond Science into Policy: Gulf of Mexico Hypoxia and the Mississippi River: Nutrient policy development for the Mississippi River watershed reflects the accumulated scientific evidence that the increase in nitrogen loading is the primary factor in the worsening of hypoxia in the northern Gulf of Mexico. AIBS Bulletin, 52(2), 129142.Google Scholar
Rejmánek, M., Sasser, C. E., & Gosselink, J. G. (1987). Modeling of vegetation dynamics in the Mississippi River deltaic plain. Vegetatio, 69(1–3), 133140.CrossRefGoogle Scholar
Rejmánek, M., Sasser, C. E., & Peterson, G. W. (1988). Hurricane-induced sediment deposition in a Gulf coast marsh. Estuarine, Coastal and Shelf Science, 27(2), 217222.CrossRefGoogle Scholar
Restreppo, G. A., Bentley, S. J., Wang, J., & Xu, K. (2018). Riverine Sediment Contribution to Distal Deltaic Wetlands: Fourleague Bay, LA. Estuaries and Coasts, 113.Google Scholar
Riekenberg, J., Bargu, S., & Twilley, R. (2014). Phytoplankton Community Shifts and Harmful Algae Presence in a Diversion Influenced Estuary. Estuaries and Coasts, 38, 22132226. doi:10.1007/s12237-014-9925-zCrossRefGoogle Scholar
Roberts, B. J., & Doty, S. M. (2015). Spatial and temporal patterns of benthic respiration and net nutrient fluxes in the Atchafalaya River Delta Estuary. Estuaries and Coasts, 38(6), 19181936.CrossRefGoogle Scholar
Roberts, H. H. (1997). Dynamic changes of the Holocene Mississippi River delta plain: the delta cycle. Journal of Coastal Research, 605627.Google Scholar
Rose, K. A., Huang, H., Justic, D., & de Mutsert, K. (2014). Simulating fish movement responses to and potential salinity stress from large-scale river diversions. Marine and Coastal Fisheries, 6, 4361. doi:10.1080/19425120.2013.866999CrossRefGoogle Scholar
Ross, M. R. V., Emily, S., Bernhardt, E. S., Doyle, M. W., & Heffernan, J. B. (2015). Designer ecosystems: Incorporating design approaches into applied ecology. Annual Review of Environment and Resources 40, 419443. doi:10.1146/annurev-environ-121012-100957CrossRefGoogle Scholar
Rutherford, J. S., Day, J. W., D’Elia, C. F., Wiegman, A. R., Willson, C. S., Caffey, R. H., Batker, D. (2018). Evaluating trade-offs of a large, infrequent sediment diversion for restoration of a forested wetland in the Mississippi delta. Estuarine, Coastal and Shelf Science, 203, 8089.CrossRefGoogle Scholar
Sasser, C. E., Visser, J. M., Mouton, E., Linscombe, J., & Hartley, S. B. (2008). Vegetation types in coastal Louisiana in 2007. Estuaries, 21, 818828.Google Scholar
Scaroni, A. E., Nyman, J. A., & Lindau, C. W. (2011). Comparison of denitrification characteristics among three habitat types of a large river floodplain: Atchafalaya River Basin, Louisiana. Hydrobiologia, 658(1), 1725.CrossRefGoogle Scholar
Sendrowski, A. & Passalacqua, P. (2017). Process connectivity in a naturally prograding river delta, Water Resources Research, 53(3), 18411863, doi:10.1002/2016WR019768.CrossRefGoogle Scholar
Shaffer, P. W., Kentula, M. E., & Gwin, S. E. (1999). Characterization of wetland hydrology using hydrogeomorphic classification. Wetlands, 19, 490504. doi:10.1007/BF03161688CrossRefGoogle Scholar
Shaw, J. B., & Mohrig, D. (2014). The importance of erosion in distributary channel network growth, Wax Lake Delta, Louisiana, USA. Geology, 42(1), 3134.CrossRefGoogle Scholar
Shen, J., & Haas, L. (2004). Calculating age and residence time in the tidal York River using three-dimensional model experiments. Estuarine, Coastal and Shelf Science, 61(3), 449461.CrossRefGoogle Scholar
Shields, M. R., Bianchi, T. S., Gélinas, Y., Allison, M. A., & Twilley, R. R. (2016). Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments. Geophysical Research Letters, 43, 11491157. doi:10.1002/2015GL067388CrossRefGoogle Scholar
Shields, M.R., Bianchi, T.S., Kolker, A.S., Kenney, W.F., Mohrig, D., Osborne, T.Z., & Curtis, J.H. (2019). Factors controlling storage, sources, and diagenetic state of organic carbon in a prograding subaerial delta: Wax Lake Delta, Louisiana: Journal of Geophysical Research – Biogeosciences, 124, doi:10.1029/2018JG004683CrossRefGoogle Scholar
Shields, M. R., Bianchi, T. S., Mohrig, D., Hutchings, J., Kenney, W. F., Kolker, A. S., & Curtis, J. H. (2017). Carbon storage in the Mississippi River Delta enhanced by ecosystem engineering: Nature Geoscience, 10 (11), doi:10.1038/NGEO3044CrossRefGoogle Scholar
Siikamäki, J., Sanchirico, J. N., Jardine, S. L., Siikamaki, J., Sanchirico, J. N., & Jardine, S. L. (2012). Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proceedings of the National Academy of Sciences, 109, 14369–14374. doi:10.1073/pnas.1200519109CrossRefGoogle ScholarPubMed
Siverd, C. G., Hagen, S. C., Bilskie, M. V., Braud, D. H., Peele, R. H., Foster-Martinez, M. R., & Twilley, R. R. (2019). Coastal Louisiana landscape and storm surge evolution: 1850–2110. Climatic Change, 157(3), 445468.CrossRefGoogle Scholar
Siverd, C. G., Hagen, S. C., Bilskie, M. V., Braud, D. H., & Twilley, R. R. (2020). Quantifying storm surge and risk reduction costs: A case study for Lafitte, Louisiana. Climatic Change, 161(1), 201223.CrossRefGoogle Scholar
Smith, C. J., DeLaune, R. D., & Patrick, W. H., Jr. (1985). Fate of riverine nitrate entering an estuary: I. Denitrification and nitrogen burial. Estuaries, 8, 1521.CrossRefGoogle Scholar
Snedden, G. A., Cable, J. E., Swarzenski, C., & Swenson, E. (2007). Sediment discharge into a subsiding Louisiana seltaic estuary through a Mississippi River diversion. Estuarine, Coastal and Shelf Science, 71, 181193.CrossRefGoogle Scholar
Soniat, T. M., Conzelmann, C. P., Byrd, J. D., Roszell, D. P., Bridevaux, J. L., Suir, K. J., & Colley, S. B. (2013). Predicting the effects of proposed Mississippi River Diversions on Oyster habitat quality; Application of an Oyster habitat suitability index model. Journal of Shellfish Research, 32, 629638. doi:10.2983/035.032.0302CrossRefGoogle Scholar
Stanford, G., Dzienia, S., & Vander Pol, R. A. (1975). Effect of temperature on denitrification rate in soils. Soil Science Society of America Journal, 39(5), 867870.CrossRefGoogle Scholar
Syvitski, J. P., Kettner, A. J., Overeem, I., Hutton, E. W., Hannon, M. T., Brakenridge, G. R., & Giosan, L. (2009). Sinking deltas due to human activities. Nature Geoscience, 2(10), 681686.CrossRefGoogle Scholar
Temmerman, S., Govers, G., Wartel, S., & Meire, P. (2003). Spatial and temporal factors controlling short‐term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 28(7): 739755.CrossRefGoogle Scholar
Tornqvist, T. E., Paola, C., Parker, G., Liu, K., Mohrig, D., Holbrook, J. M., & Twilley, R. R. (2007). Comment on “Wetland sedimentation from Hurricanes Katrina and Rita”. Science, 316(5822). doi:10.1126/Science.1136780CrossRefGoogle Scholar
Turner, R. E., Baustian, J. J., Swenson, E., & Spicer, J. S. (2006). Wetland sedimentation from hurricanes Katrina and Rita. Science, 314, 449452.CrossRefGoogle ScholarPubMed
Turner, R. E., & Boyer, M. E. (1997). Mississippi river diversions, coastal wetland restoration/creation and an economy of scale. Ecological Engineering, 8(2), 117128. http://dx.doi.org/10.1016/S0925-8574(97)00258-9CrossRefGoogle Scholar
Tweel, A. W., & Turner, R. E. (2012). Landscape-scale analysis of wetland sediment deposition from four tropical cyclone events. Plos One, 7(11), e50528.CrossRefGoogle ScholarPubMed
Twilley, R., Day, J., Bevington, A., Castañeda-Moya, E., Christensen, A., Holm, G., & Aarons, A. (2019). Ecogeomorphology of coastal deltaic floodplains and estuaries in an active delta: Insights from the Atchafalaya coastal basin. Estuarine, Coastal and Shelf Science, 106341.CrossRefGoogle Scholar
Twilley, R. R., & Rivera-Monroy, V. H. (2009). Sediment and nutrient trade-offs in restoring Mississippi river delta: restoration versus eutrophicaion. Journal of Contemporary Water Research Education, 141, 16.CrossRefGoogle Scholar
Twilley, R. R., Bentley, S. J., Chen, Q., Edmonds, D. A., Hagen, S. C., Lam, N. S., & McCall, A. (2016). Co-evolution of wetland landscapes, flooding, and human settlement in the Mississippi river delta plain. Sustainability Science, 11, 711731. doi:10.1007/s11625-016-0374-4CrossRefGoogle ScholarPubMed
Twilley, R.R., Rick, S., Bond, D., Baker, J.. 2021. Benthic Nutrient Fluxes Across Subtidal and Intertidal Habitats in Breton Sound in Response to River-Pulses of a Diversion in Mississippi River Delta. Water (ISSN 2073–4441).CrossRefGoogle Scholar
Verschelling, E., Van der Deijl, E. C., Van der Perk, M., Sloff, K., & Middelkoop, H. (2017). Effects of discharge, wind and tide on sedimentation in a recently restored tidal freshwater wetland. Hydrological Processes, 31, 28272841.CrossRefGoogle Scholar
Viero, D. P., & Defina, A. (2016). Water age, exposure time, and local flushing time in semi-enclosed, tidal basins with negligible freshwater inflow. Journal of Marine Systems, 156, 1629.CrossRefGoogle Scholar
Visser, J. M., Sasser, C. E., Chabreck, R. H., & Linscombe, R. (1998). Marsh vegetation types of the Mississippi river deltaic plain. Estuaries, 21(4), 818828.CrossRefGoogle Scholar
Wagner, W., Lague, D., Mohrig, D., Passalacqua, P., Shaw, J., & Moffett, K. (2017). Elevation change and stability on a prograding delta. Geophysical Research Letters, 44(4), 17861794.CrossRefGoogle Scholar
Wainwright, J., Turnbull, L., Ibrahim, T. G., Lexartza-Artza, I., Thornton, S. F., & Brazier, R. E. (2011) Linking environmental régimes, space and time: Interpretations of structural and functional connectivity. Geomorphology, 126(3–4), 387404, ISSN 0169-555X, https://doi.org/10.1016/j.geomorph.2010.07.027CrossRefGoogle Scholar
Wamsley, T.V., Cialone, M. A., Smith, J. M., Atkinson, J. H. & Rosati, J. D. (2010). The potential of wetlands in reducing storm surge. Ocean Engineering, 37(1): 5968.CrossRefGoogle Scholar
Walker, N. D. (2001). Tropical storm and hurricane wind effects on water level, salinity, and sediment transport in the river-influenced Atchafalaya-Vermilion Bay system, Louisiana, USA. Estuaries, 24(4), 498508.CrossRefGoogle Scholar
Walker, N. D., & Hammack, A. B. (2000). Impacts of winter storms on circulation and sediment transport: Atchafalaya-Vermilion Bay Region, Louisiana, U.S.A., Journal of Coastal Research, 16(4), 9961010.Google Scholar
Wang, H., Steyer, G. D., Couvillion, B. R., Rybczyk, J. M., Beck, H. J., Sleavin, W. J., & Rivera-Monroy, V. H. (2014). Forecasting landscape effects of Mississippi River diversions on elevation and accretion in Louisiana deltaic wetlands under future environmental uncertainty scenarios. Estuarine, Coastal and Shelf Science, 138, 5768. doi:10.1016/j.ecss.2013.12.020CrossRefGoogle Scholar
Wellner, R., Beaubouef, R., Van Wagoner, J., Roberts, H. H., Sun, T., & Wagoner, J. V. (2005). Jet-plume depositional bodies; the primary building blocks of Wax Lake Delta. Transactions – Gulf Coast Association of Geological Societies, 55, 867909.Google Scholar
White, J. R., DeLaune, R. D., Justic, D., Day, J. W., Pahl, J., Lane, R. R., & Twilley, R. R. (2019). Consequences of Mississippi river diversions on nutrient dynamics of coastal wetland soils and estuarine sediments: A review. Estuarine, Coastal and Shelf Science, 224, 209216.CrossRefGoogle Scholar
Wiegman, A. R., Day, J. W., D’Elia, C. F., Rutherford, J. S., Morris, J. T., Roy, E. D., & Snyder, B. F. (2018). Modeling impacts of sea-level rise, oil price, and management strategy on the costs of sustaining Mississippi delta marshes with hydraulic dredging. Science of the Total Environment, 618, 15471559.CrossRefGoogle ScholarPubMed
Xing, Fei, Syvitski, J. P. M., Kettner, A. J., Meselhe, E. A., Atkinson, J. H., & Khadka, A. K. (2017). Morphological responses of the Wax Lake Delta, Louisiana, to Hurricanes Rita. Elementa: Science of the Anthropocene, 5, 80. https://doi.org/10.1525/elementa.125Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×