Skip to main content Accessibility help
×
Hostname: page-component-f554764f5-c4bhq Total loading time: 0 Render date: 2025-04-21T13:58:20.267Z Has data issue: false hasContentIssue false

8 - Coastal and Deltaic Environments

from Part II - Connectivity in Process Domains

Published online by Cambridge University Press:  10 April 2025

Ronald Pöppl
Affiliation:
BOKU University Vienna
Anthony Parsons
Affiliation:
University of Sheffield
Saskia Keesstra
Affiliation:
Wageningen Universiteit, The Netherlands
Get access

Summary

Coastal rivers and deltas provide important ecosystem services, are hot spots of energy and food production and host hundreds of millions of people. These geomorphic features possess a wide range of spatial and temporal scales that need to be accounted for when analyzing the form of these systems. This form can be characterized by three types of connectivity: structural, functional, and process connectivity. Structural connectivity is driven by the physical adjacency of topographic elements; functional connectivity pertains to the transport processes that control the magnitude and directionality of fluxes of water, solutes, and solids across coastal landscapes, and process connectivity captures the variables and their interactions that define the system’s state. Connectivity and/or the lack thereof in coastal landscapes control the functioning of these systems; as such connectivity is a helpful framework that captures the structure, dynamics, and responses of coastal landscapes under future scenarios of climate and anthropogenic modifications so that these systems can be studied and restoration interventions optimally informed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Aalto, R., Lauer, J. W. & Dietrich, W. E., 2008. Spatial and temporal dynamics of sediment accumulation and exchange along Strickland River floodplains (Papua New Guinea) over decadal-to-centennial timescales. Journal of Geophysical Research: Earth Surface, 113(F1), F01S04. doi:10.1029/2006JF000627.CrossRefGoogle Scholar
Abernethy, B. & Rutherfurd, I. D., 2001. The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrological Processes, 15(1), 6379.CrossRefGoogle Scholar
Adams, P. N., Slingerland, R. L. & Smith, N. D., 2004. Variations in natural levee morphology in anastomosed channel flood plain complexes. Geomorphology, 61(1–2), 127142.CrossRefGoogle Scholar
Allison, M. A., Kuehl, S. A., Martin, T. C. & Hassan, A., 1998. Importance of flood-plain sedimentation for river sediment budgets and terrigenous input to the oceans: Insights from the Brahmaputra-Jamuna River. Geology, 26(2), 175178.2.3.CO;2>CrossRefGoogle Scholar
Anderson, J. B., Wallace, D. J., Simms, A. R., Rodriguez, A. B. & Milliken, K. T., 2014. Variable response of coastal environments of the northwestern Gulf of Mexico to sea-level rise and climate change: Implications for future change. Marine Geology, 352, 348366.CrossRefGoogle Scholar
Asahi, K., Shimizu, Y., Nelson, J. & Parker, G., 2013. Numerical simulation of river meandering with self-evolving banks. Journal of Geophysical Research: Earth Surface, 118, 22082229. doi:10.1002/jgrf.20150.CrossRefGoogle Scholar
Asselman, N. E. & Middelkoop, H., 1995. Floodplain sedimentation: Quantities, patterns and processes. Earth Surface Processes and Landforms, 20(6), 481499.CrossRefGoogle Scholar
Baitis, E., 2008. Grain sizes of recent siliciclastic deposits in Wax Lake Delta, Louisiana. Thesis (B.S.), The University of Texas at Austin, 26 p.Google Scholar
Bevington, A. E., Twilley, R. R., Sasser, C. E. & HolmJr, G. O., 2017. Contribution of river floods, hurricanes, and cold fronts to elevation change in a deltaic floodplain, northern Gulf of Mexico, USA. Estuarine, Coastal and Shelf Science, 191, 188200.CrossRefGoogle Scholar
Bevington, A. E. & Twilley, R. R., 2018. Island edge morphodynamics along a chronosequence in a prograding deltaic floodplain wetland. Journal of Coastal Research, 34(4), 806817.CrossRefGoogle Scholar
Bhattacharya, J. P., 2006. Deltas, in Facies Models Revisited, SEPM Society for Sedimentary Geology. doi:10.2110/pec.06.84.0237.CrossRefGoogle Scholar
Bobrovitskaya, N. M., Zubkova, C. & Meade, R. H., 1996. Discharges and yields of suspended sediment in the Ob’ and Yenisey Rivers of Siberia. In Erosion and Sediment Yield: Global and Regional Perspectives, eds. Walling, D.E. & Webb, B.W., 115123. Wallingford, UK: International Association of Hydrological Sciences Press.Google Scholar
Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M., & Roy, A. G., 2013. Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Science Reviews, 119. https://doi.org/10.1016/j.earscirev.2013.02.001.CrossRefGoogle Scholar
Bridge, J. S., 2009. Rivers and Floodplains: Forms, Processes, and Sedimentary Record. John Wiley & Sons, Chichester.Google Scholar
Brierley, G. J., Ferguson, R. J. & Woolfe, K. J., 1997. What is a fluvial levee? Sedimentary Geology, 114, 19. doi:10.1016/S0037-0738(97)00114-0.CrossRefGoogle Scholar
Cahoon, D. R., White, D. A. & Lynch, J. C., 2011. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta. Geomorphology, 131(3–4), 5768.CrossRefGoogle Scholar
Carle, M. V., Sasser, C. E. & Roberts, H. H., 2015. Accretion and vegetation community change in the Wax Lake Delta following the historic 2011 Mississippi River flood. Journal of Coastal Research, 31(3), 569587.CrossRefGoogle Scholar
Cazanacli, D. & Smith, N. D., 1998. A study of morphology and texture of natural levees – Cumberland Marshes, Saskatchewan, Canada. Geomorphology, 25(1–2), 4355.CrossRefGoogle Scholar
Chow, V. T., 1959. Open-Channel Hydraulics. New York, McGraw-Hill, 680 p.Google Scholar
Christiansen, T., Wiberg, P. L. & Milligan, T. G., 2000. Flow and sediment transport on a tidal salt marsh surface. Estuarine, Coastal and Shelf Science, 50(3), 315331.CrossRefGoogle Scholar
Cowell, P. J. & Thom, B. G., 1994. Morphodynamics of coastal evolution. In Coastal Evolution: Late Quaternary Shoreline Morphodynamics, (eds.) Carter, R. W. G., Woodroffe, C. D., 3386, Cambridge: Cambridge University Press.Google Scholar
Czuba, J. A., David, S. R., Edmonds, D. A. & Ward, A. S., 2019. Dynamics of surface-water connectivity in a low-gradient meandering river floodplain. Water Resources Research, 55, 18491870, doi:10.1029/2018WR023527.CrossRefGoogle Scholar
Darby, S. E., Alabyan, A. M. & Van de Wiel, M. J. 2008b. Numerical simulation of bank erosion and channel migration in meandering rivers. Water Resources Research, 38, 1163, doi:10.1029/2001WR000602, 2002.Google Scholar
David, S. R., Edmonds, D. A. & Letsinger, S. L., 2017. Controls on the occurrence and prevalence of floodplain channels in meandering rivers: Controls on floodplain channels in Meandering Rivers. Earth Surface Processes and Landforms, 42(3), 460472. https://doi.org/10.1002/esp.4002.CrossRefGoogle Scholar
Day, G., Dietrich, W. E., Rowland, J. C. & Marshall, A., 2008. The depositional web on the floodplain of the Fly River, Papua New Guinea. Journal of Geophysical Research: Earth Surface, 113, 119. doi:10.1029/2006JF000622.CrossRefGoogle Scholar
Dean, D. J., Topping, D. J., Schmidt, J. C., Griffiths, R. E. & Sabol, T. A., 2016. Sediment supply versus local hydraulic controls on sediment transport and storage in a river with large sediment loads. Journal of Geophysical Research: Earth Surface, 121, 82110. doi:10.1002/2015JF003436.CrossRefGoogle Scholar
Dietrich, W. E. & Perron, J. T., 2006. The search for a topographic signature of life. Nature, 439(7075), 411418.CrossRefGoogle ScholarPubMed
Dong, T. Y., McElroy, J. A. N. B., Il’icheva, E., Pavlov, M., Ma, H., Moodie, A. J. & Moreido, V. M., 2020. Predicting water and sediment partitioning in a delta channel network under varying discharge conditions. Water Resources Research, 56(11), p.e2020WR027199. https://doi.org/10.1029/2020WR027199.CrossRefGoogle Scholar
Draut, A. E., Kineke, G. C., Velasco, D. W., Allison, M. A. & Prime, R. J., 2005. Influence of the Atchafalaya River on recent evolution of the chenier-plain inner continental shelf, northern Gulf of Mexico. Continental Shelf Research, 25(1), 91112.CrossRefGoogle Scholar
Edmonds, D. A. L., Caldwell, R., Brondizio, E. S. & Mo Siani, S., 2020. Coastal flooding will disproportionately impact people on river deltas. Nature Communications, 11, 1–8, https://doi.org/10.1038/s41467-020-18531-4.CrossRefGoogle ScholarPubMed
Eke, E., Parker, G. & Shimizu, Y. 2014. Numerical modeling of erosional and depositional bank processes in migrating river bends with self-formed width: morphodynamics of bar push and bank pull. Journal of Geophysical Research: Earth Surface, 119, 1455–1483, doi:10.1002/2013JF003020.Google Scholar
Elliot, T., 1986. Deltas. In Sedimentary Environments: Processes, Facies, and Stratigraphy, (ed.) Reading, H. G., 113154. Blackwell Scientific Publication, Oxford.Google Scholar
Fagherazzi, S., Kirwan, M. L., Mudd, S. M., Guntenspergen, G. R., Temmerman, S., D’Alpaos, A., et al. 2012. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Reviews of Geophysics, 50, RG1002. https://doi.org/10.1029/2011RG000359.CrossRefGoogle Scholar
Ferguson, R. J. & Brierley, G. J., 1999. Levee morphology and sedimentology along the lower Tuross River, south‐eastern Australia. Sedimentology, 46(4), 627648.CrossRefGoogle Scholar
Fernandes, A. M., Tornqvist, T. E., Straub, K. M. & Mohrig, D., 2016. Connecting the backwater hydraulics of coastal rivers to fluvio-deltaic sedimentology and stratigraphy. Geology, 44 (12), 979982. doi:10.1130/G37965.1.CrossRefGoogle Scholar
Fisk, H. N. 1952. Geological Investigations of the Atchafalaya Basin and Problem of Mississippi River Diversion. Vicksburg, MS: US Army Corps of Engineers.Google Scholar
Fraticelli, C. M., 2006. Climate forcing in a wave-dominated delta: The effects of drought–flood cycles on delta progradation. Journal of Sedimentary Research, 76(9), 10671076.CrossRefGoogle Scholar
Geleynse, N., Hiatt, M., Sangireddy, H. & Passalacqua, P., 2015. Identifying environmental controls on the shoreline of a natural river delta, Journal of Geophysical Research Earth Surface, 120, 877893, doi:10.1002/2014JF003408.CrossRefGoogle Scholar
Gibling, M. R. & Davies, N. S., 2012. Palaeozoic landscapes shaped by plant evolution. Nature Geoscience, 5(2), 99105.CrossRefGoogle Scholar
Giosan, L., Syvitski, J., Constantinescu, S. & Day, J., 2014. Climate change: Protect the world’s deltas. Nature 516, 3133.CrossRefGoogle ScholarPubMed
Goodbred, S. L. & Kuehl, S. A., 1998. Floodplain processes in the Bengal Basin and the storage of Ganges-Brahmaputra river sediment: An accretion study using 137Cs and 210Pb geochronology. Sedimentary Geology, 121, 239258.CrossRefGoogle Scholar
Goodwell, A. E. & Kumar, P., 2017a. Temporal information partitioning: Characterizing synergy, uniqueness, and redundancy in interacting environmental variables. Water Resources Research, 53(7), 59205942. doi:10.1002/2016WR020216.CrossRefGoogle Scholar
Goodwell, A. E. & Kumar, P., 2017b. Temporal information partitioning networks (TIPNets): A process network approach to infer ecohydrologic shifts. Water Resources Research, 53(7), 58995919. doi:10.1002/2016WR020218.CrossRefGoogle Scholar
Hariharan, J., Piliouras, A., Schwenk, J., & Passalacqua, P., 2022. Width-based discharge partitioning in distributary networks: How right we are, Geophysical Research Letters, 49(14), e2022GL097897. doi:10.1029/2022GL097897.CrossRefGoogle Scholar
Hassenruck-Gudipati, H. J., 2021. Understanding Fluvial Topography: Morphodynamic Processes That Build River Levees and Cut Terraces. The University of Texas at Austin, Dissertation, 115 p.Google Scholar
Hassenruck-Gudipati, H.J., Passalacqua, P. and Mohrig, D., 2022. Natural levees increase in prevalence in the backwater zone: Coastal Trinity River, Texas, USA. Geology, 50(9), 1068–1072.CrossRefGoogle Scholar
Hiatt, M. & Passalacqua, P., 2015. Hydrological connectivity in river deltas: The first-order importance of channel-island exchange, Water Resources Research, 51, 22642282, doi:10.1002/2014WR016149.CrossRefGoogle Scholar
Hiatt, M. & Passalacqua, P., 2017. What controls the transition from confined to unconfined flow? Analysis of hydraulics in a coastal river delta, Journal of Hydraulic Engineering, 143, p. 6, doi:10.1061/(ASCE)HY.1943-7900.0001309.CrossRefGoogle Scholar
Hickin, E. J., 1979. Concave-bank benches on the Squamish River, British Columbia, Canada. Canadian Journal of Earth Sciences, 16, 200203, doi:10.1139/e79-018.CrossRefGoogle Scholar
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H. & Kanae, S., 2013. Global flood risk under climate change. Nature Climate Change, 3, 816821. doi:10.1038/NCLIMATE1911.CrossRefGoogle Scholar
Hooke, J. M. 1979. An analysis of the processes of river bank erosion. Journal of Hydrology 42, 3962, ISSN 0022-1694, https://doi.org/10.1016/0022-1694(79)90005-2.CrossRefGoogle Scholar
Howard, A., 1992. Modeling channel migration and floodplain sedimentation in meandering streams. In Lowland Floodplain Rivers: Geomorphological Perspectives, (eds.) Carlingand, P. A. & Petts, G. E., pp. 141, Hoboken NJ: John Wiley & Sons Ltd.Google Scholar
Howard, A. D. & Knutson, T. R., 1984. Sufficient conditions for river meandering: A simulation approach. Water Resources Research, 20, 16591667. doi:10.1029/WR020i011p01659.CrossRefGoogle Scholar
Ielpi, A. & Lapôtre, M. G., 2020. A tenfold slowdown in river meander migration driven by plant life. Nature Geoscience, 13(1), 8286.CrossRefGoogle Scholar
Ikeda, S., Parker, G. & Sawai, K., 1981. Bend theory of river meanders: Part 1. Linear development. Journal of Fluid Mechanics, 112, 363377. doi:10.1017/S0022112081000451.CrossRefGoogle Scholar
Janes, V. J. J., Nicholas, A. P., Collins, A. L. et al. 2017. Analysis of fundamental physical factors influencing channel bank erosion: results for contrasting catchments in England and Wales. Environmental and Earth Science, 76, 307, https://doi.org/10.1007/s12665-017-6593-x.CrossRefGoogle Scholar
Kesel, R. H., Dunne, K. C., McDonald, R. C., Allison, K. R. & Spicer, B. E., 1974. Lateral erosion and overbank deposition on the Mississippi River in Louisiana caused by 1973 flooding. Geology, 2(9), 461464. doi:10.1130/0091-7613(1974)2h461:LEAODOi2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Kim, W., Mohrig, D., Twilley, R., Paola, C. & Parker, G., 2009. Is it feasible to build new land in the Mississippi River delta?: EOS. Transactions, American Geophysical Union, 90(42), 373384.CrossRefGoogle Scholar
Kirwan, M. L., Guntenspergen, G. R., D’Alpaos, A., Morris, J. T., Mudd, S. M. & Temmerman, S., 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters, 37, L23401. doi:10.1029/2010GL045489.CrossRefGoogle Scholar
Kirwan, M. L. & Megonigal, J. P., 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504(7478), 5360.CrossRefGoogle ScholarPubMed
Kirwan, M. L. & Murray, A. B. 2007. A coupled geomorphic and ecological model of tidal marsh evolution. Proceedings of the National Academy of Sciences, 104(15), 61186122.CrossRefGoogle ScholarPubMed
Kleinhans, M. G., de Vries, B., Braat, L. & van Oorschot, M., 2018. Living landscapes: Muddy and vegetated floodplain effects on fluvial pattern in an incised river. Earth Surface Processes and Landforms, 43(14), 29482963. https://doi.org/10.1002/esp.4437.CrossRefGoogle Scholar
Lane, E. W., 1957. A Study of the Shape of Channels Formed by Natural Streams Flowing in Erodible Material. Missouri River Division Sediment Series Report 9: Omaha, Nebraska, U.S. Army Corps of Engineers, pp. 1–106.Google Scholar
Larsen, L. G., 2019. Multiscale flow‐vegetation‐sediment feedbacks in low‐gradient landscapes. Geomorphology.CrossRefGoogle Scholar
Lauer, J.W. & Parker, G. 2008a. Net local removal of floodplain sediment by river meander migration. Geomorphology, 96, 123149, ISSN 0169-555X, https://doi.org/10.1016/j.geomorph.2007.08.003.CrossRefGoogle Scholar
Lauer, J. W. & Parker, G. 2008b, Modeling framework for sediment deposition, storage, and evacuation in the floodplain of a meandering river: Theory. Water Resources Research, 44, W04425, doi:10.1029/2006WR005528.Google Scholar
Lauzon, R. & Murray, A. B., 2018. Comparing the cohesive effects of mud and vegetation on delta evolution. Geophysical Research Letters, 45(19), 10437.CrossRefGoogle Scholar
Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L. & Rinaldo, A., 2010. The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics. Journal of Geophysical Research: Earth Surface, 115, F04004, doi:10.1029/2009JF001600.CrossRefGoogle Scholar
Mason, J. & Mohrig, D., 2019. Differential bank migration and the maintenance of channel width in meandering river bends. Geology. doi:10.1130/G46651.1.CrossRefGoogle Scholar
Mason, J. & Mohrig, D., 2019. Scroll bars are inner bank levees along meandering river bends. Earth Surface Processes and Landforms. doi:10.1002/esp.4690.CrossRefGoogle Scholar
Mason, J. & Mohrig, D., 2018. Using time-lapse lidar to quantify river bend evolution on the meandering coastal Trinity River, Texas, USA. Journal of Geophysical Research – Earth Surface, 123(5), 11331144, https://doi.org/10.1029/2017JF004492.CrossRefGoogle Scholar
Maun, M. A., 1998. Adaptations of plants to burial in coastal sand dunes. Canadian Journal of Botany, 76(5), 713738.CrossRefGoogle Scholar
Melton, M. A., 1957. An Analysis of the Relations Among Elements of Climate, Surface Properties, and Geomorphology. Technical Report 11 Office of Naval Research Department of Geology, Columbia University.CrossRefGoogle Scholar
Mertes, L. A., 1997. Documentation and significance of the perirheic zone on inundated floodplains. Water Resources Research, 33(7), 17491762.CrossRefGoogle Scholar
Michael, H. A. & Voss, C. I., 2008. Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin. Proceedings of the National academy of Sciences, 85318536, doi:10.1073/pnas.0710477105.CrossRefGoogle Scholar
Millard, C., Hajek, E. & Edmonds, D. A., 2017. Evaluating controls on crevasse-splay size: Implications for floodplain-basin filling. Journal of Sedimentary Research, 87(7), 722739.CrossRefGoogle Scholar
Mullenbach, B. L., Nittrouer, C. A., Puig, P. & Orange, D. L., 2004. Sediment deposition in a modern submarine canyon: Eel Canyon, northern California. Marine Geology, 211(1–2), 101119.CrossRefGoogle Scholar
Nardin, W. & Edmonds, D. A., 2014. Optimum vegetation height and density for inorganic sedimentation in deltaic marshes. Nature Geoscience, 7(10), 722726.CrossRefGoogle Scholar
Nardin, W., Edmonds, D. A. & Fagherazzi, S., 2016. Influence of vegetation on spatial patterns of sediment deposition in deltaic islands during flood. Advances in Water Resources, 93, 236248.CrossRefGoogle Scholar
Nienhuis, J. H., Törnqvist, T. E. & Esposito, C. R., 2018. Crevasse Splays Versus Avulsions: A Recipe for Land Building with Levee Breaches. Geophysical Research Letters, 45, 40584067, doi:10.1029/2018GL077933.CrossRefGoogle Scholar
Nittrouer, J. A., Mohrig, D., Allison, M. A. & Peyret, A.-P., 2011. The Lowermost Mississippi River: A Mixed Bedrock-Alluvial Channel: Sedimentology, 58, 19141934, doi:10.1111/j.1365-3091.2011.01245.x.CrossRefGoogle Scholar
Nittrouer, J. A., Mohrig, D. & Allison, M. A., 2011. Punctuated sand transport in the lowermost Mississippi River. Journal of Geophysical Research-Earth Surface, 116, p.F04025, doi:10.1029/2011JF002026.CrossRefGoogle Scholar
Nittrouer, J. A., Shaw, J., Lamb, M. P. & Mohrig, D., 2012. Spatial and temporal trends for water-flow velocity and bed material sediment transport in the lower Mississippi River. Geological Society of America Bulletin, 124, 400414, doi:10.1130/B30497.1.CrossRefGoogle Scholar
North, C. P. & Davidson, S. K., 2012. Unconfined alluvial flow processes: Recognition and interpretation of their deposits, and the significance for palaeogeographic reconstruction. Earth-Science Reviews, 111(1–2), 199223.CrossRefGoogle Scholar
Odezulu, C. I., Swanson, T. & Anderson, J. B., 2021. Holocene progradation and retrogradation of the Central Texas Coast regulated by alongshore and cross‐shore sediment flux variability. The Depositional Record, 7(1), 7792.CrossRefGoogle Scholar
Olliver, E. A., Edmonds, D. A. & Shaw, J. B. 2020. Influence of floods, tides, and vegetation on sediment retention in Wax Lake Delta, Louisiana, USA. Journal of Geophysical Research: Earth Surface, 125, e2019JF005316. https://doi.org/10.1029/2019JF005316.Google Scholar
Page, K. & Nanson, G., 1982. Concave-bank benches and associated floodplain formation. Earth Surface Processes and Landforms, 7, 529543, doi:10.1002/esp.3290070603.CrossRefGoogle Scholar
Paola, C. & Mohrig, D., 1996. Paleohydraulics revisited: Paleoslope estimation in coarse-grained braided rivers. Basin Research, 8, 243254, doi:10.1046/j.1365-2117.1996.00253.x.CrossRefGoogle Scholar
Passalacqua, P., Lanzoni, S., Paola, C. & Rinaldo, A., 2013. Geomorphic signatures of deltaic processes and vegetation: The Ganges-Brahmaputra-Jamuna case study. Journal of Geophysical Research Earth Surface, 118(3), 18381849, doi:10.1002/jgrf.20128.CrossRefGoogle Scholar
Passalacqua, P., 2017. The Delta Connectome: A network-based framework for studying connectivity in river deltas. Geomorphology, 277, 5062, doi:10.1016/j.geomorph.2016.04.001.CrossRefGoogle Scholar
Pearson, S. G., van Prooijen, B. C., Elias, E. P., Vitousek, S. & Wang, Z. B., 2020. Sediment connectivity: A framework for analyzing coastal sediment transport pathways. Journal of Geophysical Research: Earth Surface, 125(10), e2020JF005595.Google Scholar
Perignon, M., Adams, J., Overeem, I. & Passalacqua, P., 2020. Dominant process zones in a mixed fluvial-tidal delta are morphologically distinct. eSurf, 8, 809824, https://doi.org/10.5194/esurf-8-809-2020.Google Scholar
Pethick, J., 1993. Shoreline adjustments and coastal management: Physical and biological processes under accelerated sea-level rise. Geographical Journal, 159, 162168.CrossRefGoogle Scholar
Pierce, A. R. & King, S. L., 2008. Spatial dynamics of overbank sedimentation in floodplain systems. Geomorphology, 100, 256268. doi:10.1016/j.geomorph.2007.12.008.CrossRefGoogle Scholar
Pizzuto, J. E., 1987. Sediment diffusion during overbank flows. Sedimentology, 34, 301317. doi:10.1111/j.1365-3091.1987.tb00779.x.CrossRefGoogle Scholar
Rodriguez, A. B., Hamilton, M. D. & Anderson, J. B., 2000. Facies and evolution of the modern Brazos Delta, Texas: Wave versus flood influence. Journal of Sedimentary Research, 70(2), 283295.CrossRefGoogle Scholar
Rowland, J. C., Dietrich, W. E., Day, G. & Parker, G., 2009. Formation and maintenance of single‐thread tie channels entering floodplain lakes: Observations from three diverse river systems. Journal of Geophysical Research, 114, F02013, doi:10.1029/2008JF001073.CrossRefGoogle Scholar
Rowland, J. C., Lepper, K., Dietrich, W. E., Wilson, C. J. & Sheldon, R., 2005. Tie channel sedimentation rates, oxbow formation age and channel migration rate from optically stimulated luminescence (OSL) analysis of floodplain deposits. Earth Surface Processes and Landforms, 30, 11611179, doi:10.1002/esp.1268.CrossRefGoogle Scholar
Ruddell, B. L. & Kumar, P., 2009a. Ecohydrologic process networks: 1. Identification. Water Resources Research, 45, p. W03419, doi:10.1029/2008WR007279.Google Scholar
Ruddell, B. L. & Kumar, P., 2009b. Ecohydrologic process networks: 2. Analysis and characterization. Water Resources Research, 45, W03420, doi:10.1029/2008WR007280.Google Scholar
Scheidt, C., Fernandes, A., Paola, C. & Caers, J., 2015. Can geostatistical models represent natures variability? An analysis using flume experiments. Petroleum Geostatistics. doi:10.3997/2214-4609.201413624.Google Scholar
Schreiber, T., 2000. Measuring information transfer. Physical Review Letters, 85, 461464. doi:10.1103/PhysRevLett.85.461.CrossRefGoogle ScholarPubMed
Sendrowski, A. & Passalacqua, P., 2017. Process connectivity in a naturally prograding river delta. Water Resources Research, 53, 3, 18411863. doi:10.1002/2016WR019768.CrossRefGoogle Scholar
Sendrowski, A., Sadid, K., Meselhe, E., Wagner, R. W., Mohrig, D. & Passalacqua, P., 2018. Transfer entropy as a tool for hydrodynamic model validation. Entropy, 20, 58. doi:10.3390/e20010058.CrossRefGoogle ScholarPubMed
Shaw, J. B., Estep, J. D., Whaling, A. R., Sanks, K. M. & Edmonds, D. A., 2018. Measuring subaqueous progradation of the Wax Lake Delta with a model of flow direction divergence. Earth Surface Dynamics, 6(4), 11551168.CrossRefGoogle Scholar
Shaw, J. B., Mohrig, D. & Wagner, R. W., 2016. Flow patterns and morphology of a prograding river delta. Journal of Geophysical Research – Earth Surface, 121(2), 372391. doi:10.1002/2015JF003570.CrossRefGoogle Scholar
Shaw, J. B. & Mohrig, D., 2014a. The importance of erosion in distributary channel network growth, Wax Lake Delta, Louisiana, USA. Geology, 42(1), 3134.CrossRefGoogle Scholar
Shaw, J. B. & Mohrig, D., 2014b. Supplemental material: The importance of erosion in distributary channel network growth, Wax Lake Delta, Louisiana, USA. GSA DATA REPOSITORY 2014008.CrossRefGoogle Scholar
Shaw, J. B., Mohrig, D. & Whitman, S. K., 2013. The morphology and evolution of channels on the Wax Lake Delta, Louisiana, USA. Journal of Geophysical Research – Earth Surface, 118, 15621584. doi:10.1002/jgrf.20123.CrossRefGoogle Scholar
Simon, A. & Collison, A. J., 2002. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth surface processes and landforms, 27(5), 527546.CrossRefGoogle Scholar
Smith, N. D., Cross, T. A., Dufficy, J. P. & Clough, S. R., 1989. Anatomy of an avulsion. Sedimentology, 36(1), 123. https://doi.org/10.1111/j.1365-3091.1989.tb00817.x.CrossRefGoogle Scholar
Smith, D. G., Hubbard, S. M., Lecki, D. A. & Fustic, M., 2009. Counter point bar deposits: Lithofacies and reservoir significance in the meandering modern Peace River and ancient McMurray Formation, Alberta, Canada. Sedimentology, 56, 16551669, doi:10.1111/j.1365-3091.2009.01050.x.CrossRefGoogle Scholar
Smith, B. C., Moffett, K. B. & Mohrig, D., 2020. Short-term ecogeomorphic evolution of a fluvial delta from hindcasting intertidal marsh-top elevations (HIME). Remote Sensing, 12, 1517, doi:10.3390/rs12091517.CrossRefGoogle Scholar
Smith, V., Mason, J. & Mohrig, D., 2020. Reach-scale changes in channel geometry and dynamics due to the coastal backwater effect: The lower Trinity River, Texas. Earth Surface Processes and Landforms, 45(3), 565573, doi:10.1002/esp.4754.CrossRefGoogle Scholar
Smith, N. D. & Pérez-Arlucea, M., 2008. Natural levee deposition during the 2005 flood of the Saskatchewan River. Geomorphology, 101(4), 583594.CrossRefGoogle Scholar
Shields, M. R., Bianchi, T. S., Mohrig, D., Hutchings, J., Kenney, W. F., Kolker, A. S. & Curtis, J. H., 2017. Carbon storage in the Mississippi River Delta enhanced by ecosystem engineering. Nature Geoscience, 10(11), doi:10.1038/NGEO3044.CrossRefGoogle Scholar
Slingerland, R. & Smith, N. D., 1998. Necessary conditions for a meandering-river avulsion. Geology, 26(5), 435438.2.3.CO;2>CrossRefGoogle Scholar
Sun, T., Meakin, P., Jossang, T. & Schwarz, K., 1996. A simulation model for meandering rivers. Water Resources Research, 32, 29372954. doi:10.1029/96WR00998.CrossRefGoogle Scholar
Swanson, K. M., Watson, E., Aalto, R., Lauer, J.W., Bera, M.T., Marshall, A., Taylor, M.P., Apte, S.C. & Dietrich, W.E., 2008. Sediment load and floodplain deposition rates: Comparison of the Fly and Strickland rivers, Papua New Guinea. Journal of Geophysical Research, 113, F01S03, doi:10.1029/2006JF000623.CrossRefGoogle Scholar
Sylvester, Z., Durkin, P. R., Hubbard, S. M. & Mohrig, D., 2021. Autogenic translation and counter-point-bar deposition in meandering rivers. Geological Society of America Bulletin, https://doi.org/10.1130/B35829.1.CrossRefGoogle Scholar
Temmerman, S. & Kirwan, M. L., 2015. Building landwith a rising sea. Science, 349, 588589. http://dx.doi.org/10.1126/science.aac8312.CrossRefGoogle ScholarPubMed
Temmerman, S., Bouma, T. J., Van de Koppel, J., Van der Wal, D., De Vries, M. B. & Herman, P. M. J., 2007. Vegetation causes channel erosion in a tidal landscape. Geology, 35(7), 631634.CrossRefGoogle Scholar
Tessler, Z. D., Vörösmarty, C. J., Grossberg, M., Gladkova, I., Aizenman, H., Syvitski, J. P. M. & Foufoula-Georgiou, E., 2015. Profiling risk and sustainability in coastal deltas of the world. Science, 349, 638643. doi:10.1126/science.aab3574.CrossRefGoogle ScholarPubMed
Törnqvist, T. E. & Bridge, J. S., 2002. Spatial variation of overbank aggradation rate and its influence on avulsion frequency. Sedimentology, 49(5), 891905.CrossRefGoogle Scholar
Tull, N., Passalacqua, P., Hassenruck-Gudipati, H., Rahman, S., Wright, K., Hariharan, J., & Mohrig, D., 2022. Bidirectional river-floodplain connectivity during combined pluvial-fluvial events. Water Resources Research, 58(3), e2021WR030492, https://doi.org/10.1029/2021WR030492.CrossRefGoogle Scholar
van Dijk, W. M., Densmore, A. L., Sinha, R., Singh, A., & Voller, V. R., 2016. Reduced-complexity probabilistic reconstruction of alluvial aquifer stratigraphy, and application to sedimentary fans in northwestern India. Journal of Hydrology, 541, 12411257, https://doi.org/10.1016/j.jhydrol.2016.08.028.CrossRefGoogle Scholar
Wagner, R. W., Lague, D., Mohrig, D., Passalacqua, P., Shaw, J. & Moffett, K., 2017. Elevation change and stability on a prograding delta. Geophysical Research Letters, 44(4), 17861794, doi:10.1002/2016GL072070.CrossRefGoogle Scholar
Walker, N. D. & Hammack, A. B., 2000. Impacts of winter storms on circulation and sediment transport: Atchafalaya-Vermilion Bay Region, Louisiana, U.S.A. Journal of Coastal Research, 16(4), 9961010.Google Scholar
Walters, D. C. & Kirwan, M. L., 2016. Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise. Ecology and Evolution, 6(9), 29482956.CrossRefGoogle ScholarPubMed
Weight, R. W., Anderson, J. B. & Fernandez, R., 2011. Rapid mud accumulation on the central Texas shelf linked to climate change and sea-level rise. Journal of Sedimentary Research, 81(10), 743764.CrossRefGoogle Scholar
Wolman, M. G. & Leopold, L. B., 1957. River flood plains: Some observations on their formation (No. 282-C, 87–109). US Government Printing Office.CrossRefGoogle Scholar
Wright, K., Hiatt, M. & Passalacqua, P., 2018. Hydrological connectivity in vegetated river deltas: The importance of patchiness below a threshold. Geophysical Research Letters, 45, 10416–10427, https://doi.org/10.1029/2018GL079183.CrossRefGoogle Scholar
Wright, L. D. & Thom, B. G., 1977. Coastal depositional landforms: A morphodynamic approach. Progress in Physical Geography, 1(3), 412459.CrossRefGoogle Scholar
Yamasaki, T. N., de Lima, P. H., Silva, D. F., Cristiane, G. D. A., Janzen, J. G. & Nepf, H. M., 2019. From patch to channel scale: The evolution of emergent vegetation in a channel. Advances in Water Resources, 129, 131145.CrossRefGoogle Scholar
Yang, J. Q., Chung, H., & Nepf, H. M., 2016. The onset of sediment transport in vegetated channels predicted by turbulent kinetic energy. Geophysical Research Letters, 43(21), 11261.CrossRefGoogle Scholar
Yuill, B., Lavoie, D. & Reed, D. J., 2009. Understanding subsidence processes in coastal Louisiana. Journal of Coastal Research, 10054, 2336.CrossRefGoogle Scholar
Yuill, B. T., Khadka, A. K., Pereira, J., Allison, M. A. & Meselhe, E. A., 2016. Morphodynamics of the erosional phase of crevasse-splay evolution and implications for river sediment diversion function. Geomorphology, 259, 1229.CrossRefGoogle Scholar
Zong, L. & Nepf, H., 2010. Flow and deposition in and around a finite patch of vegetation. Geomorphology, 116(3–4), 363372.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×