Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-07T22:58:28.132Z Has data issue: false hasContentIssue false

5 - The polynomial hierarchy and alternations

from PART ONE - BASIC COMPLEXITY CLASSES

Published online by Cambridge University Press:  05 June 2012

Sanjeev Arora
Affiliation:
Princeton University, New Jersey
Boaz Barak
Affiliation:
Princeton University, New Jersey
Get access

Summary

[S]ynthesizing circuits is exceedingly difficulty. It is even more difficult to show that a circuit found in this way is the most economical one to realize a function. The difficulty springs from the large number of essentially different networks available.

– Claude Shannon, 1949

We have already encountered some ways of “capturing” the essence of families of computational problems by showing that they are complete for some natural complexity class. This chapter continues this process by studying another family of natural problems (including one mentioned in Shannon's quote at the begginning of this chapter) whose essence is not captured by nondeterminism alone. The correct complexity class that captures these problems is the polynomial hierarchy, denoted PH, which is a generalization of P, NP and coNP. It consists of an infinite number of subclasses (called levels) each of which is important in its own right. These subclasses are conjectured to be distinct, and this conjecture is a stronger form of PNP. This conjecture tends to crop up (sometimes unexpectedly) in many complexity theoretic investigations, including in Chapters 6, 7, and 17 of this book.

In this chapter we provide three equivalent definitions of the polynomial hierarchy:

  1. In Section 5.2 we define the polynomial hierarchy as the set of languages defined via polynomial-time predicates combined with a constant number of alternating forall (∀) and exists (∃) quantifiers, generalizing the definitions of NP and coNP from Chapter 2.

  2. […]

Type
Chapter
Information
Computational Complexity
A Modern Approach
, pp. 95 - 105
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×