Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T14:47:00.142Z Has data issue: false hasContentIssue false

Part 2 - Misidentifying the Impaired Cognitive Domain

Published online by Cambridge University Press:  03 November 2020

Keith Josephs
Affiliation:
Mayo Clinic Alzheimer’s Disease Research Center
Federico Rodriguez-Porcel
Affiliation:
Medical University of South Carolina
Rhonna Shatz
Affiliation:
University of Cincinnati
Daniel Weintraub
Affiliation:
University of Pennsylvania
Alberto Espay
Affiliation:
University of Cincinnati
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bang, J., Spina, S. and Miller, B. L. 2015. Frontotemporal dementia. Lancet 386(10004) 16721682.Google Scholar
Gorno-Tempini, M. L. et al. 2011. Classification of primary progressive aphasia and its variants. Neurology 76(11) 10061014.CrossRefGoogle ScholarPubMed
Hodges, J. R. and Patterson, K. 2007. Semantic dementia: a unique clinicopathological syndrome. Lancet Neurol 6(11) 10041014.CrossRefGoogle ScholarPubMed
Karageorgiou, E. and Miller, B. L. 2014. Frontotemporal lobar degeneration: a clinical approach. Semin Neurol 34(2) 189201.CrossRefGoogle ScholarPubMed
Landin-Romero, R., Tan, R., Hodges, J. R. and Kumfor, F. 2016. An update on semantic dementia: genetics, imaging, and pathology. Alzheimers Res Ther 8(1) 52.CrossRefGoogle ScholarPubMed
Mann, D. M. A. and Snowden, J. S. 2017. Frontotemporal lobar degeneration: pathogenesis, pathology and pathways to phenotype. Brain Pathol 27(6) 723736.CrossRefGoogle ScholarPubMed
Patterson, K., Nestor, P. J. and Rogers, T. T. 2007. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci 8(12) 976987.CrossRefGoogle Scholar
Rohrer, J. D. et al. 2008. Word-finding difficulty: a clinical analysis of the progressive aphasias. Brain 131(Pt 1) 838.CrossRefGoogle ScholarPubMed
Rohrer, J. D. et al. 2009. The heritability and genetics of frontotemporal lobar degeneration. Neurology 73(18) 14511456.CrossRefGoogle ScholarPubMed
Thompson, S. A., Patterson, K. and Hodges, J. R. 2003. Left/right asymmetry of atrophy in semantic dementia: behavioral-cognitive implications. Neurology 61(9) 11961203.CrossRefGoogle ScholarPubMed

References

Agosta, F. et al. 2015. MRI signatures of the frontotemporal lobar degeneration continuum. Hum Brain Mapp 7 26022614.CrossRefGoogle Scholar
Beck, J. et al. 2008. A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. Brain 131(Pt 3) 706720.CrossRefGoogle Scholar
Budson, A. E. 2009. Understanding memory dysfunction. Neurologist 15(2) 7179.CrossRefGoogle ScholarPubMed
Dickerson, B. C. and Eichenbaum, H. 2010. The episodic memory system: neurocircuitry and disorders. Neuropsychopharmacology 35(1) 86104.CrossRefGoogle ScholarPubMed
Hornberger, M. et al. 2010. How preserved is episodic memory in behavioral variant frontotemporal dementia? Neurology 74(6) 472479.CrossRefGoogle ScholarPubMed
Kelley, B. J. et al. 2010. Alzheimer disease–like phenotype associated with the c.154delA mutation in progranulin. Arch Neurol 67(2) 171177.CrossRefGoogle ScholarPubMed
Le Ber, I. et al. 2008. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain 131(Pt 3) 732746.CrossRefGoogle ScholarPubMed
Mendez, M. F. and Shapira, J. S. 2005. Loss of insight and functional neuroimaging in frontotemporal dementia. J Neuropsychiatry Clin Neurosci 17(3) 413416.CrossRefGoogle ScholarPubMed
Pressman, P. S. and Miller, B. L. 2014. Diagnosis and management of behavioral variant frontotemporal dementia. Biol Psychiatry 75(7) 574581.Google Scholar
Rademakers, R. et al. 2007. Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C–<T (Arg493X) mutation: an international initiative. Lancet Neurol 6(10) 857868.CrossRefGoogle ScholarPubMed
Rascovsky, K. et al. 2011. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134(Pt 9) 24562477.CrossRefGoogle ScholarPubMed
Seelaar, H. et al. 2011. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry 82(5) 476486.CrossRefGoogle ScholarPubMed
Whitwell, J. L. et al. 2012. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain 135(Pt 3) 794806.CrossRefGoogle ScholarPubMed

References

Bertram, K. and Williams, D. R. 2012. Visual hallucinations in the differential diagnosis of parkinsonism. J Neurol Neurosurg Psychiatry 83(4) 448452.Google Scholar
Bradshaw, J. et al. 2004. Fluctuating cognition in dementia with Lewy bodies and Alzheimer’s disease is qualitatively distinct. J Neurol Neurosurg Psychiatry 75(3) 382387.Google Scholar
Escandon, A., Al-Hammadi, N. and Galvin, J. E. 2010. Effect of cognitive fluctuation on neuropsychological performance in aging and dementia. Neurology 74(3) 210217.Google Scholar
Ferman, T. J. et al. 2004. DLB fluctuations: specific features that reliably differentiate DLB from AD and normal aging. Neurology 62(2) 181187.Google Scholar
Matar, E., Shine, J. M., Halliday, G. M. and Lewis, S. J. G. 2019. Cognitive fluctuations in Lewy body dementia: towards a pathophysiological framework. Brain 1 3146.Google Scholar
McKeith, I. G. et al. 1996. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB). Neurology 47(5) 1113.CrossRefGoogle ScholarPubMed
Mesulam, M. M. 2010. Attentional and confusional States. Continuum 16(4) 128139.Google Scholar
Riley, D. E. and Espay, A. J. 2018. Cognitive fluctuations in Parkinson’s disease dementia: blood pressure lability as an underlying mechanism. J Clin Mov Disord 5 1.CrossRefGoogle ScholarPubMed
Walker, M. P. et al. 2000. The clinician assessment of fluctuation and the one day fluctuation assessment scale: two methods to assess fluctuating confusion in dementia. Br J Psychiatry 177 252256.CrossRefGoogle ScholarPubMed
Williams, D. R., Warren, J. D. and Lees, A. J. 2008. Using the presence of visual hallucinations to differentiate Parkinson’s disease from atypical parkinsonism. J Neurol Neurosurg Psychiatry 79(6) 652655.CrossRefGoogle ScholarPubMed

References

Chow, T. W. et al. 2009. Apathy symptom profile and behavioral associations in frontotemporal dementia vs dementia of Alzheimer type. Arch Neurol 66(7) 888893.CrossRefGoogle ScholarPubMed
Lanctôt, K. L. et al. 2017. Apathy associated with neurocognitive disorders: recent progress and future directions. Alzheimers Dement 13(1) 84100.Google Scholar
Marin, R. S. et al. 1995. Apathy: a treatable syndrome. J Neuropsychiatry Clin Neurosci 7(1) 2330.Google Scholar
Robert, P. et al. 2009. Proposed diagnostic criteria for apathy in Alzheimer’s disease and other neuropsychiatric disorders. Eur Psychiatry 24(2) 98104.CrossRefGoogle ScholarPubMed
Stanton, B. R. and Carson, A. 2016. Apathy: a practical guide for neurologists. Pract Neurol 16(1) 4247.Google Scholar
Wongpakaran, N., van Reekum, R., Wongpakaran, T. and Clarke, D. 2007. Selective serotonin reuptake inhibitor use associates with apathy among depressed elderly: a case-control study. Ann Gen Psychiatry 6 7.Google Scholar

References

Crutch, S. J. et al. 2017. Consensus classification of posterior cortical atrophy. Alzheimers Dement 13(8) 870884.CrossRefGoogle ScholarPubMed
Josephs, K. A. et al. 2006. Visual hallucinations in posterior cortical atrophy. Arch Neurol 63(10) 14271432.CrossRefGoogle ScholarPubMed
McMonagle, P., Deering, F., Berliner, Y. and Kertesz, A. 2006. The cognitive profile of posterior cortical atrophy. Neurology 66(3) 331338.CrossRefGoogle ScholarPubMed
Nestor, P. J. et al. 2003. The topography of metabolic deficits in posterior cortical atrophy (the visual variant of Alzheimer’s disease) with FDG-PET. J Neurol Neurosurg Psychiatry 74(11) 15211529.Google Scholar
Ossenkoppele, R. et al. 2015. Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy. Ann Neurol 77(2) 338342.CrossRefGoogle Scholar
Paterson, R. W. et al. 2015. Dissecting IWG-2 typical and atypical Alzheimer’s disease: insights from cerebrospinal fluid analysis. J Neurol 262(12) 27222730.CrossRefGoogle ScholarPubMed
Renner, J. A. et al. 2004. Progressive posterior cortical dysfunction: a clinicopathologic series. Neurology 63(7) 11751180.CrossRefGoogle ScholarPubMed
Rosenbloom, M. H. et al. 2011. Distinct clinical and metabolic deficits in PCA and AD are not related to amyloid distribution. Neurology 76(21) 17891796.Google Scholar
Rusconi, E. 2018. Gerstmann syndrome: historic and current perspectives. Handb Clin Neurol 151 395411.Google Scholar
Ryan, N. S. et al. 2014. Motor features in posterior cortical atrophy and their imaging correlates. Neurobiol Aging 35(12) 28452857.Google Scholar
Schott, J. M. and Crutch, S. J. 2019. Posterior cortical atrophy. Continuum 25(1) 5275.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×