from Section 2 - Cerebrovascular disease
Published online by Cambridge University Press: 05 March 2013
Introduction
Assessment of regional cerebral perfusion provides highly desirable information for diagnosis and management of cerebrovascular disease and acute stroke. Over the past decades, several approaches have been used to image regional perfusion in cerebrovascular disease, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), xenon-enhanced X-ray computed tomography (XeCT), and MR imaging (MRI). The majority of these methods utilize an exogenous tracer administered intravenously or by inhalation. Most of the MRI studies of cerebral hemodynamics in cerebrovascular disease and stroke have also relied on dynamic tracking of susceptibility-related signal changes accompanying the passage of an exogenous bolus of intravenous contrast agent such as gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA). Dynamic susceptibility contrast (DSC) imaging primarily measures blood volume and transit times,[1] but cerebral blood flow (CBF) can be estimated from these parameters based on the central volume principle.[2,3]
Arterial spin labeling (ASL) perfusion MRI is an emerging technology to directly measure CBF using magnetically labeled arterial blood water as endogenous tracer.[4,5] The methodological scheme of ASL is analogous to that used in steady-state PET or SPECT.[6] Arterial blood water is magnetically labeled proximal to the tissue of interest, and perfusion is determined by pair-wise comparison with separate images acquired without labeling. Arterial blood water has a decay rate of T1, sufficiently long to detect perfusion of the microvasculature and tissue but short enough to monitor dynamic changes. As ASL does not require administration of contrast agents or radioactive tracers, it may be more convenient than other approaches, and it can be repeated as often as required in the same imaging session without accumulative effects. Consequently, ASL perfusion contrast can used to monitor CBF changes in response to pharmacological manipulation or task activation. Furthermore, ASL can provide quantitative tissue-specific perfusion values in classical units of milliliters per gram tissue per minute.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.