Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T01:58:05.980Z Has data issue: false hasContentIssue false

7 - The van Cittert–Zernike theorem

Published online by Cambridge University Press:  31 January 2011

Masud Mansuripur
Affiliation:
University of Arizona
Get access

Summary

The beam of light emanating from a quasi-monochromatic point source (or a sufficiently distant extended source) is said to be spatially coherent: the reason is that, at any two points on a given cross-section of the beam, the oscillating electromagnetic fields maintain their relative phase at all times. If an opaque screen with two pinholes is placed at such a cross-section, Young's interference fringes will form, and the observed fringe contrast will be 100% (at and around the center of the fringe pattern). This is the sense in which the fields at two points are said to be spatially coherent relative to each other. If the relative phase of the fields at the two points varies randomly with time, the pair of point sources will fail to produce Young's fringes and, therefore, the fields are considered to be incoherent. In practice there is a continuum of possibilities between the aforementioned extremes, and the resulting fringe contrast may fall anywhere between zero and 100%. The fields at the two points are then said to be partially coherent with respect to one another, and the properly defined fringe contrast in Young's experiment is used as the measure of their degree of coherence.

Optical systems involving partially coherent illumination are explored in several other chapters of this book; see, for example, “Coherent and incoherent imaging” (Chapter 5), “Michelson's stellar interferometer” (Chapter 35), “Zernike's method of phase contrast” (Chapter 38), and “polarization microscopy” (Chapter 39).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Born, M. and Wolf, E., Principles of Optics, sixth edition, Pergamon Press, Oxford, 1980.Google Scholar
Mandel, L. and Wolf, E., Optical Coherence and Quantum Optics, Cambridge University Press, UK, 1995.CrossRefGoogle Scholar
Klein, M. V., Optics, Wiley, New York, 1970.Google Scholar
Loudon, R., The Quantum Theory of Light, second edition, Clarendon Press, Oxford, 1992.Google Scholar
Cittert, P. H., Physica 1, 201 (1934).CrossRef
Zernike, F., Physica 5, 785 (1938).CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×