Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T02:08:04.584Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2012

Igor V. Dolgachev
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Classical Algebraic Geometry
A Modern View
, pp. 593 - 619
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] H., Abo and M., Brambilla, Secant varieties of Segre–Veronese varieties Pm × Pn embedded by O(1,2), Experiment. Math. 18 (2009), 369–84.Google Scholar
[2] M., Alberich-Carramiñana, Geometry of the Plane Cremona Maps, Lecture Notes in Mathematics, 1769. Springer-Verlag, Berlin, 2002.Google Scholar
[3] Algebraic Surfaces. By the members of the seminar of I. R., Shafarevich. Translated from the Russian by Susan, Walker. Proc. Steklov Inst. Math., No. 75 (1965). American Mathematical Society, Providence, RI, 1965Google Scholar
[4] J. W., Alexander, On the factorization of Cremona plane transformations, Trans. Amer. Math. Soc. 17 (1916), 295–300.Google Scholar
[5] J. E., Alexander and A., Hirschowitz, Polynomial interpolation in several variables, J. Alg. Geom. 4 (1995), 201–22.Google Scholar
[6] D., Allcock, J., Carlson and D., Toledo, The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Alg. Geom. 11 (2002), 659–724.Google Scholar
[7] D., Allcock and E., Freitag, Cubic surfaces and Borcherds products, Comment. Math. Helv. 77 (2002), 270–96Google Scholar
[8] A., Altman and S., Kleiman, Compactifying the Picard scheme, Adv. in Math. 35 (1980), 50–112.Google Scholar
[9] G., Antonelli, Nota sulli relationi independenti tra le coordinate di una formal fundamentale in uno spazio di quantesivogliano dimensioni, Ann. Scuola Norm. Pisa, 3 (1883), 69–77.Google Scholar
[10] E., Arbarello, M., Cornalba, P., Griffiths and J., Harris, Geometry of Algebraic Curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 267. Springer-Verlag, New York, 1985.Google Scholar
[11] S., Aronhold, Theorie der homogenen Funktionen dritten Grades, J. Reine Angew. Math. 55 (1858), 97–191.Google Scholar
[12] S., Aronhold, Über den gegenseitigen Zusamemmenhang der 28 Doppeltangenten einer allgemeiner Curve 4ten Grades, Monatberichter der Akademie der Wissenschaften zu Berlin (1864), 499–523.Google Scholar
[13] M., Artebani, Heegner divisors in the moduli space of genus three curves, Trans. Amer. Math. Soc. 360 (2008), 1581–99.Google Scholar
[14] M., Artebani and I., Dolgachev, The Hesse pencil of plane cubic curves, L'Enseign. Math. 55 (2009), 235–73.Google Scholar
[15] M., Artebani, A compactification of M3 via K3 surfaces, Nagoya Math. J. 196 (2009), 1–26.Google Scholar
[16] M., Artin, On isolated rational singularities of surfaces, Amer. J. Math. 84 (1962), 485–96.Google Scholar
[17] M., Artin and D., Mumford, Some elementary examples of unirational varietieswhich are not rational, Proc. London Math. Soc. (3) 25 (1972), 75–95.Google Scholar
[18] F., August, Discusitiones de superfieciebus tertii ordinis (in Latin), Diss. Berlin. 1862. Available on the web from the Göttingen Mathematical Collection.Google Scholar
[19] D. W., Babbage, A series of rational loci with one apparent double point, Proc. Cambridge Phil. Soc. 27 (1931), 300–403.Google Scholar
[20] H., Baker, On the curves which lie on cubic surface, Proc. London Math. Soc. 11 (1913), 285–301.Google Scholar
[21] H., Baker, Principles of Geometry, vols. 1–6. Cambridge University Press, 1922. (Republished by Frederick Ungar Publ., 1960.)Google Scholar
[22] H., Baker, Segre's ten nodal cubic primal in space of four dimensions and del Pezzo's surface in five dimensions, J. London. Math. Soc. 6 (1931), 176–85.Google Scholar
[23] F., Bardelli, The moduli space of curves of genus three together with an odd thetacharacteristic is rational, Nederl. Akad. Witensch. Indag. Math. 49 (1987), 1–5.Google Scholar
[24] W., Barth, Moduli of vector bundles on the projective plane, Invent. Math. 42 (1977), 63–91.Google Scholar
[25] W., Barth, Counting singularities of quadratic forms on vector bundles. Vector Bundles and Differential Equations (Proc. Conf., Nice, 1979), pp. 1–19, Progr. Math., 7, Birkhäuser, Boston, MA, 1980.Google Scholar
[26] W., Barth and Th., Bauer, Poncelet Theorems, Exposition. Math. 14 (1996), 125–44.Google Scholar
[27] W., Barth and J., Michel, Modular curves and Poncelet polygons, Math. Ann. 295 (1993), 25–49.Google Scholar
[28] H., Bateman, The quartic curve and its inscribed configurations, Amer. J. Math. 36 (1914), 357–86.Google Scholar
[29] F., Bath, On the quintic surface in space of five dimension, Proc. Cambridge Phil. Soc. 24 (1928), 48–55, 191–209.Google Scholar
[30] G., Battaglini, Intorno ai sistemi di retter di primo grade, Giornale di Matematiche, 6 (1868), 24–36.Google Scholar
[31] G., Battaglini, Intorno ai sistemi di retti di secondo grado, Giornale di Matematiche 6 (1868), 239–59; 7 (1869), 55–75.Google Scholar
[32] K., Baur and J., Draisma, Higher secant varieties of the minimal adjoint orbit, J. Algebra 280 (2004), 743–61.Google Scholar
[33] A., Beauville, Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup. (4) 10 (1977), 309–91.Google Scholar
[34] A., Beauville, Le groupe de monodromie des familles universelles d'hypersurfaces et d'intersections complétes. Complex Analysis and Algebraic Geometry (Göttingen, 1985), 8–18, Lecture Notes in Math., 1194, Springer, Berlin, 1986.Google Scholar
[35] A., Beauville, Fano contact manifolds and nilpotent orbits, Comment. Math. Helv. 73 (1998), 566–83.Google Scholar
[36] A., Beauville, Counting rational curves on K3 surfaces, Duke Math. J. 97 (1999), 99–108.Google Scholar
[37] A., Beauville, Determinantal hypersurfaces, Mich. Math. J. 48 (2000), 39–64.Google Scholar
[38] N., Beklemishev, Invariants of cubic forms of four variables, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1982, no. 2, 42–49 [English Transl.: Moscow Univ. Mathematical Bulletin, 37 (1982), 54–62].Google Scholar
[39] M., Beltrametti, E., Carletti, D., Gallarati and G., Bragadin, Lectures on Curves, Surfaces and Projective Varieties. Translated from the 2003 Italian original Letture su curve, superficie e varietá speciali, Bollati Boringheri editore, Torino, 2003, EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2009.Google Scholar
[40] E., Bertini, Ricerche sulle trasformazioni univoche involutorie nel piano, Ann. Mat. Pura Appl. (2) 8 (1877), 254–87.Google Scholar
[41] G. Massoti, Biggiogero, La hessiana e i suoi problemi, Rend. Sem. Mat. Fis. Milano, 36 (1966), 101–42.Google Scholar
[42] J., Binet, Mémoire sur la théorie des axes conjuguées et des moments d'inertia des corps, J. de l'École Polytech. 9 (1813), 41.Google Scholar
[43] Ch., Birkenhake and H., Lange, Complex Abelian Varieties, second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 302. Springer-Verlag, Berlin, 2004.Google Scholar
[44] R., Blache, Riemann–Roch theorem for normal surfaces and applications, Abh. Math. Sem. Univ. Hamburg 65 (1995), 307–40.Google Scholar
[45] E., Bobillier, Reserches sur les lignes et surfaces algébriques de tous les ordres, Ann. Mat. Pura Appl. 18 (18271828), 157–66.Google Scholar
[46] C., Böhning, The rationality of the moduli space of curves of genus 3 after P. Katsylo. Cohomological and Geometric Approaches to Rationality Problems, 17–53, Progr. Math., 282, Birkhäuser Boston, Inc., Boston, MA, 2010.Google Scholar
[47] G., Bordiga, La superficie del 6° ordine con 10 rette, nello spazio R4 e le sue projezioni nello spazio ordinario, Mem. Accad. Lincei, (4) 3 (1887) 182–203.Google Scholar
[48] A., Borel and J., de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23, (1949), 200–21.Google Scholar
[49] H., Bos, C., Kers, F., Oort and D., Raven, Poncelet's closure theorem, Exposition. Math. 5 (1987), 289–364.Google Scholar
[50] O., Bottema, A classification of rational quartic ruled surfaces, Geom. Dedicata, 1 (1973), 349–55.Google Scholar
[51] N., Bourbaki, Algebra, I.Chapters 1–3. Translated from the French. Reprint of the 1989. English translation:Elements of Mathematics, Springer-Verlag, Berlin, 1998.Google Scholar
[52] N., Bourbaki, Lie groups and Lie algebras, Chapters 4–6. Translated from the 1968 French original, Elements of Mathematics. Springer-Verlag, Berlin, 2002.Google Scholar
[53] M. C., Brambilla and G., Ottaviani, On the Alexander–Hirschowitz theorem, J. Pure Appl. Algebra, 212 (2008), 1229–51.Google Scholar
[54] J., Briançon, Description de Hilbn C{x, y}, Invent. Math. 41 (1977), 45–89.Google Scholar
[55] A., Brill, Über Entsprechen von Punktsystemen auf Einer Curven, Math. Ann., 6 (1873), 33–65.Google Scholar
[56] F., Brioschi, Sur la theorie des formes cubiques a trois indeterminées, Comptes Rendus Acad. Sci. Paris, 56 (1863), 304–7.Google Scholar
[57] W., Bruns and U., Vetter, Determinantal Rings. Lecture Notes in Mathematics, 1327. Springer-Verlag, Berlin, 1988.Google Scholar
[58] D., Burns, On the geometry of elliptic modular surfaces and representations of finite groups. Algebraic Geometry (Ann Arbor, Mich., 1981), 1–29, Lecture Notes in Math., 1008, Springer, Berlin, 1983.Google Scholar
[59] J. E., Campbell, Note on the maximum number of arbitrary points which can be double points on a curve, or surface, of any degree, The Messenger of Mathematics, 21 (1891/1892), 158–64.Google Scholar
[60] E., Caporali, Memorie di Geometria, Napoli, Pellerano, 1888.Google Scholar
[61] L., Caporaso and E., Sernesi, Recovering plane curves from their bitangents, J. Alg. Geom. 12 (2003), 225–44.Google Scholar
[62] L., Caporaso and E., Sernesi, Characterizing curves by their odd theta-characteristics, J. Reine Angew. Math. 562 (2003), 101–35.Google Scholar
[63] E., Carlini and J., Chipalkatti, On Waring's problem for several algebraic forms, Comment. Math. Helv. 78 (2003), 494–517.Google Scholar
[64] R., Carter, Conjugacy Classes in the Weyl Group. Seminar on Algebraic Groups and Related Finite Groups, The Institute for Advanced Study, Princeton, NJ, 1968/1969, pp. 297–318, Springer, Berlin.Google Scholar
[65] G., Casnati and F., Catanese, Even sets of nodes are bundle symmetric, J. Diff. Geom. 47 (1997), 237–56 [Correction: 50(1998), 415].Google Scholar
[66] G., Castelnuovo, Le transformazioni generatrici del gruppo Cremoniano nel piano, Atti Realle Accad. Scienze di Torino, 36 (1901), 861–74.Google Scholar
[67] G., Castelnuovo, Ricerche di geometria della rette nello spazio a quattro dimensioni, Atti. Ist. Veneto, 7 (1891), 855–901.Google Scholar
[68] F., Catanese, Babbage's conjecture, contact of surfaces, symmetric determinantal varieties and applications, Invent. Math. 63 (1981), 433–65.Google Scholar
[69] F., Catanese, On the rationality of certain moduli spaces related to curves of genus 4. Algebraic Geometry (Ann Arbor, Mich., 1981), 30–50, Lecture Notes in Math., 1008, Springer, Berlin, 1983.Google Scholar
[70] F., Catanese, Generic invertible sheaves of 2-torsion and generic invertible theta-characteristics on nodal plane curves. Algebraic Geometry, Sitges (Barcelona), 1983, 58–70, Lecture Notes in Math., 1124, Springer, Berlin, 1985.Google Scholar
[71] A., Cayley, Mémoire sur les courbes du troisième ordre, J. Math. Pures Appl., 9 (1844), 285–93 [Collected Papers, I, 183–189].Google Scholar
[72] A., Cayley, Sur la surface des ondes, J. Math. Pures Appl. 11 (1846), 291–6 [Collected Papers, I, 302–5].Google Scholar
[73] A., Cayley, On the triple tangent planes of the surface of the third order, Cambridge and Dublin Math. J. 4 (1849), 118–32 [Collected Papers, I, 445–56].Google Scholar
[74] A., Cayley, On the theory of skew surfaces, Cambridge and Dublin Math. J. 7 (1852), 171–3 [Collected Papers, II, 33–4].Google Scholar
[75] A., Cayley, Note on the porism of the in-and-circumscribed polygon, Phil. Magazine, 6, (1853), 99–102 [Collected Papers, II, 57–86].Google Scholar
[76] A., Cayley, Third memoir on quantics, Phil. Trans. R. Soc. London, 146 (1856), 627–47 [Collected Papers, II, 310–35].Google Scholar
[77] A., Cayley, Memoir on curves of the third order, Phil. Trans. R. Soc. London, 147 (1857), 415–46 [Collected Papers, II, 381–416].Google Scholar
[78] A., Cayley, On the double tangents of a plane curve, Phil. Trans. R. Soc. London, 147 (1859), 193–212 [Collected Papers, IV, 186–206].Google Scholar
[79] A., Cayley, On a new analytical representation of curves in space, Quart. J. Math. 3 (1860), 225–34 [Collected Papers, IV, 446–55];Google Scholar
Quart. J. Math. 5 (1862), 81–6 [Collected Papers, IV, 490–5].
[80] A., Cayley, On the porism of the in-and-circumscribed polygon, Phil. Trans. R. Soc. London, 151 (1861), 225–39 [Collected Papers, IV, 292–308].Google Scholar
[81] A., Cayley, On a skew surface of the third order, Phil. Mag. 24 (1862), 514–19 [Collected Papers, V, 90–4].Google Scholar
[82] A., Cayley, On skew surfaces, otherwise scrolls, Phil. Trans. R. Soc. London, I 153 (1863), 453–83; II 154, 559–76 (1864); III 159, (1869), 111–26 [Collected Papers, V, 168–200, 201–57, VI, 312–28].Google Scholar
[83] A., Cayley, On certain developable surfaces, Quart. J. Math. 6 (1864), 108–26 [Collected Papers, V, 267–83].Google Scholar
[84] A., Cayley, On correspondence of two points on a curve, Proc. London Math. Soc. 1 (18651866), 1–7 [Collected Papers, VI, 9–13].Google Scholar
[85] A., Cayley, Note sur l'algorithm des tangentes doubles d'une courbe des quatrième ordre, J. Reine Angew. Math. 68 (1868), 83–7 [Collected Papers, VII, 123–5].Google Scholar
[86] A., Cayley, A memoir on the theory of reciprocal surfaces, Phil. Trans. R. Soc. London 64 (1869), 201–29; Corrections and additions 67 (1872), 83–7 [Collected Papers, VI, 329–39; 577–81].Google Scholar
[87] A., Cayley, Memoir on cubic surfaces, Phil. Trans. R. Soc. London, 154 (1869), 231–326 [Collected Papers, VI, 359–455].Google Scholar
[88] A., Cayley, A memoir on quartic surfaces, Proc. London Math. Soc. 3 (1869/1870), 19–69 [Collected Papers, VII, 133–181].Google Scholar
[89] A., Cayley, On the 34 concomitants of the ternary cubic, Amer. J. Math. 4 (1881), 1–15.Google Scholar
[90] K., Chandler, A brief proof of a maximal rank theorem for generic double points in projective space, Trans. Amer. Math. Soc. 353 (2001), 19071920.Google Scholar
[91] M., Chasles, Géométrie de situation. Démonstration de quelques propriétés du triangle, de l'angle triédre du tétraèdre, considérès par rapport aux lignes et surfaces du second ordre, Ann. Math. Pures Appl., 19 (1828/1829), 65–85.Google Scholar
[92] M., Chasles, Propriétés nouvelle de l'hyperboloïde à une nappe, Ann. Math. Pures Appl. 4 (1839), 348–50.Google Scholar
[93] M., Chasles, Considérations sur la méthode générale exposée dans la séance du 15 Février, Comptes Rendus 58 (1864), 1167–76.Google Scholar
[94] M., Chasles, Aperçu Historique sur l'Origine et le Développement des Méthodes en Géométrie, Gauthier-Villars, Paris, 1875.Google Scholar
[95] J., Chilpalkatti, Apolar schemes of algebraic forms, Canad. J. Math. 58 (2006), 476–91.Google Scholar
[96] E., Ciani, Contributo alla teoria del gruppo di 168 collineazioni piani, Ann. Mat. Pura Appl. 5 (1900), 33–55.Google Scholar
[97] E., Ciani, Le curve piani di quarte ordine, Giornale di Matematiche 48 (1910), 259–304.Google Scholar
[98] E., Ciani, Introduzione alla Geometria Algebraica, Padova, Cedam, 1931.Google Scholar
[99] E., Ciani, Scritti Geometrici Scelti, Padova, Cedam, 1937.Google Scholar
[100] C., Ciliberto, Geometric aspects of polynomial interpolation in more variables and of Waring's problem. European Congress of Mathematics, Vol. I (Barcelona, 2000), 289–316, Progr. Math., 201, Birkhäuser, Basel, 2001.Google Scholar
[101] C., Ciliberto, M., Mella and F., Russo, Varieties with one apparent double point, J. Alg. Geom. 13 (2004), 475–512.Google Scholar
[102] C., Ciliberto, F., Russo and A., Simis, Homaloidal hypersurfaces and hypersurfaces with vanishing Hessian, Adv. Math. 218 (2008), 1759–805.Google Scholar
[103] A., Clebsch, Ueber Transformation der homogenen Funktionen dritter Ordnung mit vier Verderlichen, J. Reine Angew. Math. 58 (1860), 109–26.Google Scholar
[104] A., Clebsch, Ueber Curven vierter Ordnung, J. Reine Angew. Math. 59 (1861), 125–45.Google Scholar
[105] A., Clebsch, Ueber die Knotenpunkte der Hesseschen Fläche, insbesondere bei Oberflächen dritter Ordnung, J. Reine Angew. Math., 59 (1861), 193–228.Google Scholar
[106] A., Clebsch, Ueber einen Satz von Steiner und einige Punkte der Theorie der Curven dritter Ordnung, J. Reine Angew. Math. 63 (1864), 94–121.Google Scholar
[107] A., Clebsch, Ueber die Anwendung der Abelschen Funktionen in der Geometrie, J. Reine Angew. Math. 63 (1864), 142–84.Google Scholar
[108] A., Clebsch, Die Geometrie auf den Flächen dritter Ordnung, J. Reine Angew. Math., 65 (1866), 359–80.Google Scholar
[109] A., Clebsch, Ueber die Flächen vierter Ordnung, welche eine Doppelcurve zweiten Grades besitzen, J. Reine Angew. Math. 69 (1868), 142–84.Google Scholar
[110] A., Clebsch and P., Gordan, Ueber cubische ternäre Formen, Math. Ann. 6 (1869), 436–512.Google Scholar
[111] A., Clebsch, Ueber die Anwendung der quadratischen Substitution auf die Gleichungen 5ten Grades und die geometrische Theorie des ebenen Fünfseits, Math. Ann. 4 (1871), 284–345.Google Scholar
[112] A., Clebsch and F., Lindemann, Leçons sur la Géométrie, Paris, Gauthier-Verlag, t. 1, 1879, t. 2, 1880.Google Scholar
[113] H., Clemens, A Scrapbook of Complex Curve Theory, second edition. Graduate Studies in Mathematics, 55. American Mathematical Society, Providence, RI, 2003.Google Scholar
[114] W., Clifford, Analysis of Cremona's Transformations, Math. Papers, Macmillan, London. 1882, pp. 538–42.Google Scholar
[115] A., Coble, An application of finite geometry to the characteristic theory of the odd and even theta functions, Trans. Amer. Math. Soc. 14 (1913), 241–76.Google Scholar
[116] A., Coble, Point sets and allied Cremona groups. I, Trans. Amer. Math. Soc. Part I 16 (1915), 155–98; Part II 17 (1916), 345–85; Part III 18 (1917), 331–72.Google Scholar
[117] A., Coble, Multiple binary forms with the closure property, Amer. J. Math. 43 (1921), 1–19.Google Scholar
[118] A., Coble, The ten nodes of the rational sextic and of the Cayley symmetroid, Amer. J. Math. 41 (1919), no. 4, 243–65.Google Scholar
[119] A., Coble, Double binary forms with the closure property, Trans. Amer. Math. Soc. 28 (1926), 357–83.Google Scholar
[120] A., Coble, Algebraic Geometry and Theta Functions (reprint of the 1929 edition), A. M. S. Coll. Publ., v. 10. A. M. S., Providence, RI, 1982.Google Scholar
[121] T., Cohen, Investigations on the plane quartic, Amer. J. Math. 41 (1919), 191–211.Google Scholar
[122] D., Collingwood and W., McGovern, Nilpotent Orbits in Semisimple Lie Algebras. Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York, 1993.Google Scholar
[123] E., Colombo, B., van Geemen and E., Looijenga, del Pezzo moduli via root systems. Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin. Vol. I, 291–337, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009.Google Scholar
[124] J., Conway, R., Curtis, S., Norton, R., Parker and R., Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985.Google Scholar
[125] R., Cook and A., Thomas, Line bundles and homogeneous matrices, Quart. J. Math. Oxford Ser. (2) 30 (1979), 423–9.Google Scholar
[126] J., Coolidge, A History of the Conic Sections and Quadric Surfaces, Dover Publ., New York, 1968.Google Scholar
[127] J., Coolidge, A Treatise on Algebraic Plane Curves, Dover Publ., Inc., New York, 1959.Google Scholar
[128] M., Cornalba, Moduli of curves and theta-characteristics. Lectures on Riemann Surfaces (Trieste, 1987), 560–89, World Sci. Publ., Teaneck, NJ, 1989.Google Scholar
[129] A., Corti, Factoring birational maps of threefolds after Sarkisov, J. Alg. Geom. 4 (1995), 223–54.Google Scholar
[130] F., Cossec, Reye congruences, Trans. Amer. Math. Soc. 280 (1983), 737–51.Google Scholar
[131] F., Cossec and I., Dolgachev, Enriques Surfaces. I. Progress in Mathematics, 76. Birkhäuser Boston, Inc., Boston, MA, 1989.Google Scholar
[132] H., Coxeter, Projective Geometry. Blaisdell Publishing Co. Ginn and Co., New York-London-Toronto, 1964 [Revised reprint of the 2d edition, Springer, New York, 1994].Google Scholar
[133] H., Coxeter, Regular Polytopes. Methuen & Co., Ltd., London; Pitman Publishing Corporation, New York, 1948 (3rd edition reprinted by Dover Publ. New York, 1973).Google Scholar
[134] H., Coxeter, My graph, Proc. London Math. Soc. (3) 46 (1983), 117–36.Google Scholar
[135] H., Coxeter, The Evolution of Coxeter–Dynkin Diagrams. Polytopes: Abstract, Convex and Computational (Scarborough, ON, 1993), 21–42, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 440, Kluwer Acad. Publ., Dordrecht, 1994.Google Scholar
[136] B., Crauder and S., Katz, Cremona transformations with smooth irreducible fundamental locus, Amer. J. Math. 111 (1989), 289–307.Google Scholar
[137] L., Cremona, Sulle superficie gobbe del terz' ordine, Atti Inst. Lombrado 2 (1861), 291–302 [Collected Papers, t. 1, n.27].Google Scholar
[138] L., Cremona, Note sur les cubiques gauches, J. Reine Angew. Math. 60 (1862), 188–92 [Opere, t. 2, n. 38].Google Scholar
[139] L., Cremona, Introduzione ad una theoria geometrica delle curve piane, Mem. Accad. Sci. Inst. Bologna (1) 12 (1862), 305–436 [Opere, t. 1, n. 29].Google Scholar
[140] L., Cremona, Sulle transformazioni geometriche delle figure piane, Mem. Accad. Bologna (2) 2 (1863), 621–30 [Opere, t. 2, n. 40].Google Scholar
[141] L., Cremona, Sulle transformazioni geometriche delle figure piane, Mem. Accad. Bologna (2) 5 (1865), 3–35 [Opere, t. 2, n. 62].Google Scholar
[142] L., Cremona, Mémoire de géométrie pure sur les surfaces du troisiéme ordre, Journ. des Math. Pures et Appl. 68 (1868), 1–133 (Opere matematiche di Luigi Cremona, Milan, 1914, t. 3, pp. 1–121)Google Scholar
[German translation: Grunzüge einer allgeimeinen Theorie der Oberflächen in synthetischer Behandlung, Berlin, 1870].
[143] L., Cremona, Sulle superficie gobbe di quatro grado, Mem. Accad. Scienze Ist. Bologna, 8 (1868), 235–50 [Opere: t. 2, n. 78].Google Scholar
[144] L., Cremona, Sulle transformazion razionali nello spazio, Lomb. Ist. Rendiconti, (2) 4 (1871), 269–79 [Opere, t. 3, n. 91].Google Scholar
[145] L., Cremona, Über die Abbildung algebraischer Flächen, Math. Ann. 4 (1871), 213–30 [Opere, t. 3, n. 93].Google Scholar
[146] L., Cremona, Ueber die Polar-Hexaeder bei den Flächen dritter ordnung, Math. Ann. 13 (1878), 301–4 (Opere, t. 3, pp. 430–3).Google Scholar
[147] J., D'Almeida, Lie singulier d'une surface réglée, Bull. Soc. Math. France 118 (1990), 395–401.Google Scholar
[148] M., Dale, Terracini's lemma and the secant variety of a curve, Proc. London Math. Soc. (3) 4 (1984), 329–39.Google Scholar
[149] E., Dardanelli and B., van Geemen, Hessians and the moduli space of cubic surfaces, Trans. Amer. Math. Soc. 422 (2007), 17–36.Google Scholar
[150] G., Darboux, Recherches sur les surfaces orthogonales, Ann. l'École. Norm. Sup. (1) 2 (1865), 55–69.Google Scholar
[151] G., Darboux, Sur systèmes linéaires de coniques et de surfaces du seconde ordre, Bull. Sci. Math. Astr., 1 (1870), 348–58.Google Scholar
[152] G., Darboux, Mémoire sur les surfaces cyclides, Ann. l'École Norm. Sup. (2) 1 (1872), 273–92.Google Scholar
[153] G., Darboux, Sur une Classe Remarquable de Courbes et de Surfaces Algébriques. Hermann Publ., Paris, 1896.Google Scholar
[154] G., Darboux, Principes de Géométrie Analytique. Gauthier-Villars, Paris, 1917.Google Scholar
[155] O., Debarre, Higher-dimensional Algebraic Geometry, Universitext. Springer-Verlag, New York, 2001.Google Scholar
[156] P., Deligne, Intersections sur les Surfaces Régulières, Groupes de Monodromie en Géométrie Algébrique, Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II). Dirigé par P. Deligne et N. Katz. Lecture Notes in Mathematics, Vol. 340. Springer-Verlag, Berlin-New York, 1973, pp. 1–38.Google Scholar
[157] E., de Jonquières, Mélanges de Géométrie Pure, Paris, Mallet-Bachelier, 1856.Google Scholar
[158] E., de Jonquières, De la transformation géométrique des figures planes, Nouvelles Annales Mathematiques (2) 3 (1864), 97–111.Google Scholar
[159] E., de Jonquières, Mémoire sur les figures isographiques, Giornale di Math. 23 (1885), 48–75.Google Scholar
[160] P., del Pezzo, Sulle superficie dell nmo ordine immerse nello spazio di n dimensioni, Rend. Circolo Mat. di Palermo, 1 (1887), 241–71.Google Scholar
[161] M., Demazure, Surfaces de del Pezzo, I–V, in Séminaire sur les Singularités des Surfaces, ed. by M., Demazure, H., Pinkham and B., Teissier. Lecture Notes in Mathematics, 777. Springer, Berlin, 1980, pp. 21–69.Google Scholar
[162] M., Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. (4) 3 (1970), 507–88.Google Scholar
[163] O., Dersch, Doppeltangenten einer Curve nter Ordnung, Math. Ann. 7 (1874), 497–511.Google Scholar
[164] L., Dickson, Determination of all polynomials expressible as determinants with linear elements, Trans. Amer. Math. Soc. 22 (1921), 167–79.Google Scholar
[165] L., Dickson, A fundamental system of covariants of the ternary cubic form, Ann. Math., 23 (1921), 76–82.Google Scholar
[166] J., Dixmier, On the projective invariants of quartic plane curves, Adv. Math. 64 (1987), 279–304.Google Scholar
[167] A., Dixon, Note on the reduction of a ternary quartic to a symmetric determinant, Proc. Cambridge Phil. Soc. 2 (1902), 350–1.Google Scholar
[168] A., Dixon and T., Stuart, On the reduction of the ternary quintic and septimic to their canonical forms, Proc. London Math. Soc. (2) 4 (1906), 160–8.Google Scholar
[169] A., Dixon, The bitangents of a plane quartic, Quarterly J. Math. 41 (1910), 209–13.Google Scholar
[170] A., Dixon, On the lines on a cubic surface, Schur quadrics, and quadrics through six of the lines, J. London Math. Soc. (1) 1 (1926), 170–5.Google Scholar
[171] A., Dixon, A proof of Schläfli's Theorem about the double-six, J. London Math. Soc. (1) 11 (1936), 201–2.Google Scholar
[172] I., Dolgachev, Rational surfaces with a pencil of elliptic curves (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 30 1(1966), 1073–100.Google Scholar
[173] I., Dolgachev, Weighted projective varieties. Group Actions and Vector Fields (Vancouver, B.C., 1981), 34–71, Lecture Notes in Math., 956, Springer, Berlin, 1982.Google Scholar
[174] I., Dolgachev and D., Ortland, Point sets in projective spaces and theta functions, Astérisque No. 165 (1989).Google Scholar
[175] I., Dolgachev and V., Kanev, Polar covariants of plane cubics and quartics, Adv. Math. 98 (1993), 216–301.Google Scholar
[176] I., Dolgachev and M., Kapranov, Arrangements of hyperplanes and vector bundles on Pn. Duke Math. J. 71 (1993), 633–64Google Scholar
[177] I., Dolgachev and M., Kapranov, Schur quadrics, cubic surfaces and rank 2 vector bundles over the projective plane. Journés de Géometrie Algébrique d'Orsay (Orsay, 1992). Astérisque No. 218 (1993), 111–44.Google Scholar
[178] I., Dolgachev, Polar Cremona transformations, Michigan Math. J. 48 (2000), 191–202.Google Scholar
[179] I., Dolgachev and J., Keum, Birational automorphisms of quartic Hessian surfaces, Trans. Amer. Math. Soc. 354 (2002), 3031–57.Google Scholar
[180] I., Dolgachev, Lectures on Invariant Theory, London Mathematical Society Lecture Note Series, 296. Cambridge University Press, Cambridge, 2003.Google Scholar
[181] I., Dolgachev, Dual homogeneous forms and varieties of power sums, Milan J. Math. 72 (2004), 163–87.Google Scholar
[182] I., Dolgachev, Luigi Cremona and Cubic Surfaces. Luigi Cremona (1830–1903), 55–70, Incontr. Studio, 36, Istituto Lombardo di Scienze e Lettere, Milan, 2005.Google Scholar
[183] I., Dolgachev, B., van Geemen and S., Kondō, A complex ball uniformization of the moduli space of cubic surfaces via periods of K3 surfaces, J. Reine Angew. Math. 588 (2005), 99–148.Google Scholar
[184] I., Dolgachev, Rationality of R2 and R3, Pure Appl. Math. Quart. 4 (2008), no. 2, part 1, 501–8.Google Scholar
[185] I., Dolgachev, Reflection groups in algebraic geometry, Bull. Amer. Math. Soc. (N.S.) 45 (2008), 1–60.Google Scholar
[186] I., Dolgachev and V., Iskovskikh, Finite Subgroups of the Plane Cremona Group, Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin. Vol. I, 443–548, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009.Google Scholar
[187] R., Donagi, The Schottky Problem. Theory of Moduli (Montecatini Terme, 1985), 84–137, Lecture Notes in Mathematics, 1337, Springer, Berlin, 1988.Google Scholar
[188] R., Donagi, The fibers of the Prym map. Curves, Jacobians, and Abelian Varieties (Amherst, MA, 1990), 55–125, Contemp. Math., 136, Amer. Math. Soc., Providence, RI, 1992.Google Scholar
[189] R., Donagi, The unirationality of A5, Ann. Math. (2) 119 (1984), 269–307.Google Scholar
[190] R., Donagi and R., Smith, The structure of the Prym map, Acta Math. 146 (1981), 25–102.Google Scholar
[191] Ch., Dupin, Applications de Géométrie et de Méchanique, Bachelier Publ., Paris, 1822.Google Scholar
[192] H., Durège, Die ebenen Curven dritter Ordinung, Teubner, Leipzig, 1871.Google Scholar
[193] P., Du Val, On the Kantor group of a set of points in a plane, Proc. London Math. Soc. 42 (1936), 18–51.Google Scholar
[194] P., Du Val, On isolated singularities of surfaces which do not affect the conditions of adjunction.I, II, III, Proc. Cambridge Phil. Soc. 30 (1934), 453–9; 460–5; 483–91.Google Scholar
[195] W., Dyck, Notiz über eine reguläre Riemann'sche Fläche vom Geschlechte drei und die zugehörige “Normalcurve” vierter Ordnung, Math. Ann. 17, 510–17.
[196] E., Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30 (1952), 349–462.Google Scholar
[197] F., Eckardt, Ueber diejenigen Flächen dritten Grades, auf denen sich drei gerade Linien in einem Punkte schneiden, Math. Ann. 10 (1876), 227–72.Google Scholar
[198] W., Edge, The Theory of Ruled Surfaces, Cambridge University Press, 1931.Google Scholar
[199] W., Edge, The Klein group in three dimensions, Acta Math. 79 (1947), 153–223.Google Scholar
[200] W., Edge, Three plane sextics and their automorphisms, Canad. J. Math., 21 (1969), 1263–78.Google Scholar
[201] W., Edge, A pencil of four-nodal plane sextics, Math. Proc. Cambridge Phil. Soc. 89 (1981), 413–21.Google Scholar
[202] W., Edge, The pairing of del Pezzo quintics, J. London Math. Soc. (2) 27 (1983), 402–12.Google Scholar
[203] W., Edge, A plane sextic and its five cusps, Proc. Roy. Soc. Edinburgh, Sect. A 118 (1991), 209–23.Google Scholar
[204] R., Ehrenborg and G.-C., Rota, Apolarity and canonical forms for homogeneous polynomials, European J. Combin. 14 (1993), 157–81.Google Scholar
[205] L., Ein and N., Shepherd-Barron, Some special Cremona transformations. Amer. J. Math. 111 (1989), 783–800.Google Scholar
[206] D., Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995.Google Scholar
[207] D., Eisenbud and S., Popescu, The projective geometry of the Gale transform, J. Algebra 230 (2000), 127–73.Google Scholar
[208] N., Elkies, The Klein Quartic in Number Theory, The Eightfold Way, 51–101, Math. Sci. Res. Inst. Publ., 35, Cambridge University Press, Cambridge, 1999.Google Scholar
[209] G., Ellingsrud, Sur le schéma de Hilbert des variétés de codimension 2 dans Pe à cône de Cohen–Macaulay. Ann. Sci. École Norm. Sup. (4) 8 (1975), 423–31.Google Scholar
[210] E., Elliott, An Introduction to the Algebra of Quantics, Oxford University Press, 1895 [2nd edition reprinted by Chelsea Publ. Co, 1964].Google Scholar
[211] F., Enriques, Sui gruppi continui do transformazioni cremoniane nel piano, Rend. Acc. Sci. Lincei (5) 2 (1893), 468–73.Google Scholar
[212] F., Enriques and O., Chisini, Lezioni sulla Teoria Geometrica delle Equazioni e delle Funzioni Abgebriche, vol. I–IV, Bologna, Zanichelli, 1918. (New edition, 1985.)Google Scholar
[213] Enzyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Herausgegeben im Auftrage der Akademien der Wissenschaften zu Berlin, Göttingen, Heidelberg, Leipzig, München und Wien, sowie unter Mitwirkung Zahlreicher Fachgenossen, Leipzig, B. G. Teubner, 1898/1904–1904/1935.
[214] G., Farkas and K., Ludwig, The Kodaira dimension of the moduli space of Prym varieties, J. European Math. Soc. 12 (2010), 755–95.Google Scholar
[215] J., Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics, Vol. 352. Springer-Verlag, Berlin–New York, 1973.Google Scholar
[216] N. M., Ferrers, Note on reciprocal triangles and tetrahedra, Quart. J. Pure Applied Math. 1 (1857), 191–5.Google Scholar
[217] H., Finkelnberg, Small resolutions of the Segre cubic, Indag. Math. 90 (3) (1987), 261–77.Google Scholar
[218] G., Fischer, Plane Algebraic Curves, Student Mathematical Library, 15. American Mathematical Society, Providence, RI, 2001.Google Scholar
[219] G., Fischer and J., Piontkowski, Ruled Varieties. An Introduction to Algebraic Differential Geometry, Advanced Lectures in Mathematics. Friedr. Vieweg and Sohn, Braunschweig, 2001.Google Scholar
[220] L., Flatto, Poncelet's Theorem. Amer. Math. Soc., Providence, RI, 2009.Google Scholar
[221] E., Formanek, The center of the ring of 3 × 3 generic matrices, Linear and Multilinear Algebra 7 (1979), 203–12.Google Scholar
[222] W., Frahm, Bemerkung über das Flächennetz zweiter Ordnung, Math. Ann. 7 (1874), 635–8.Google Scholar
[223] E., Freitag, A graded algebra related to cubic surfaces, Kyushu J. Math. 56 (2002), 299–312.Google Scholar
[224] R., Fricke, Lerhbuch der Algebra, Braunschweig, F. Vieweg, 19241928.Google Scholar
[225] R., Friedman and R., Smith, The generic Torelli theorem for the Prym map, Invent. Math. 67 (1982), 473–90.Google Scholar
[226] G., Frobenius, Ueber die Beziehungen zwischen den 28 Doppeltangenten einer ebenen Curve vierter Ordnung, J. Reine Angew. Math. 99 (1886), 275–314.Google Scholar
[227] G., Frobenius, Ueber die Jacobi'schen Functionen dreier Variabeln, J. Reine Angew. Math. 105 (1889), 35–100.Google Scholar
[228] W., Fulton, Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin, 1998.Google Scholar
[229] W., Fulton and J., Harris, Representation Theory, A First Course. Graduate Texts in Mathematics, 129. Readings in Mathematics, Springer-Verlag, New York, 1991.Google Scholar
[230] F., Gantmacher, The Theory of Matrices. Vol. 1. AMS Chelsea Publ. Co., Providence, RI, 1998.Google Scholar
[231] B., van Geemen, A linear system on Naruki's moduli space of marked cubic surfaces, Internat. J. Math. 13 (2002), 183–208.Google Scholar
[232] B., van Geemen and G., van der Geer, Kummer varieties and the moduli spaces of abelian varieties, Amer. J. Math. 108 (1986), 615–41.Google Scholar
[233] G., van der Geer, On the geometry of a Siegel modular threefold, Math. Ann. 260 (1982), 317–50.Google Scholar
[234] C., Geiser, Ueber die Doppeltangenten einer ebenen Curve vierten Grades, Math. Ann. 1 (1860), 129–38.Google Scholar
[235] C., Geiser, Ueber zwei geometrische Probleme, J. Reine Angew. Math, 67 (1867), 78–89.Google Scholar
[236] I., Gelfand, M., Kapranov and A., Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser Boston, Inc., Boston, MA, 1994.Google Scholar
[237] A., Geramita, Inverse systems of fat points: Waring's problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals. The Curves Seminar at Queen's, Vol. X (Kingston, ON, 1995), 2–114, Queen's Papers in Pure and Appl. Math., 102, Queen's University, 1996.Google Scholar
[238] F., Gerbardi, Sul gruppi di coniche in involuzione, Atti Accad. Sci. Torino, 17 (1882), 358–71.Google Scholar
[239] F., Gerbardi, Sul gruppo semplcie di 360 collineazione piane, Math. Ann. 50 (1900), 473–6.Google Scholar
[240] F., Gerbardi, Le frazione continue di Halphen in realzione colle correspondence [2,2] involutore e coi poligoni di Poncelet, Rend. Circ. Mat. Palermo, 43 (1919), 78–104.Google Scholar
[241] G., Giambelli, Ordini della varieta rappresentata col'annulare tutti i minori di dato ordine estratti da una data matrice di forme, Rendiconti Accad. Lincei (2), 12 (1903), 294–7.Google Scholar
[242] G., Giambelli, Sulla varieta rapresentate coll'annullare determinanti minori contenuti in un determinanante simmetrico od emisimmetrico generico fi forme, Atti Accad. Sci. Torino, 41 (1905/1906), 102–25.Google Scholar
[243] G., Giorgini, Sopra alcuni proprieta de piani de “momenti, Mem. Soc. Ital. Modena., 20 (1827), 243.Google Scholar
[244] M., Gizatullin, On covariants of plane quartic associated to its even theta characteristic. Algebraic Geometry, 37–74, Contemp. Math., 422, Amer. Math. Soc., Providence, RI, 2007.Google Scholar
[245] M., Gizatullin, Bialgebra and geometry of plane quartics, Asian J. Math. 5 (2001), no. 3, 387–432.Google Scholar
[246] J., Glass, Theta constants of genus three, Compositio Math. 40 (1980), 123–37.Google Scholar
[247] L., Godeaux, Les Transformations Birationnelles du Plan, 2nd edn. Mém. Sci. Math., 122. Gauthier-Villars, Paris, 1953.Google Scholar
[248] G., Gonzalez-Sprinberg and I., Pan, On characteristic classes of determinantal Cremona transformations, Math. Ann. 335 (2006), 479–87.Google Scholar
[249] R., Goodman and N., Wallach, Representations and Invariants of the Classical Groups. Encyclopedia of Mathematics and its Applications, 68. Cambridge University Press, Cambridge, 1998.Google Scholar
[250] P., Gordan and M., Noether, Über die algebraischen Formen deren Hesse'sche Determinante identisch verschwindet, Math. Ann. 10 (1876), 547–68.Google Scholar
[251] P., Gordan, Ueber die typische Darstellung der ternaären biquadratischen Form f = t31t2 + t32t3 + t33t1, Math. Ann. 17 (1880), 359–78.Google Scholar
[252] P., Gordan, Das simultane System von zwei quadratischen quaternären Formen, Math. Ann. 56 (1903), 1–48.Google Scholar
[253] P., Gordan, Die partielle Differentiale Gleichungen der Valentinerproblem, Math. Ann. 61 (1906), 453–526.Google Scholar
[254] T., Gosset, On the regular and semi-regular figures in space of n dimensions, Messenger Math. 29 (1900), 43–8.Google Scholar
[255] J., Grace and A., Young, The Algebra of Invariants, Cambridge University Press, 1903 (reprinted by Chelsea Publ. Co., 1965).Google Scholar
[256] H., Grassmann, Lineale Ausdehnungslehre, Leipzig, Otto Wigand Co., 1844.Google Scholar
[257] H., Grassmann, Die Ausdehnungslehre, Berlin, Verlag Enslin, 1868 [English translation: Extension Theory, translated and edited by L., Kannenberg, History of Mathematics, vol. 19, A.M.S., Providence, RI 2000].Google Scholar
[258] H., Grassmann, Ueber der Erzeugung der Curven dritter Ordnung, J. Reine Angew. Math. 36 (1848), 177–82.Google Scholar
[259] H., Grassmann, Die stereometrische Gleichungen dritten Grades und die dadurch erzeugen Oberflächen, J. Reine Angew. Math. 49 (1856), 47–65.Google Scholar
[260] G.-M., Greuel and H., Knörrer, Einfache Kurvensingularitäten und torsionsfreie Moduln, Math. Ann. 270 (1985), 417–25.Google Scholar
[261] G.-M., Greuel and G., Pfister, Moduli spaces for torsion free modules on curve singularities I, J. Alg. Geom. 2 (1993), 8–135.Google Scholar
[262] P., Griffiths and J., Harris, On Cayley's explicit solution to Poncelet's porism, Enseign. Math. (2) 24 (1978), 31–40.Google Scholar
[263] P., Griffiths and J., Harris, A Poncelet Theorem in space, Comment. Math. Helv. 52 (1977), 145–60.Google Scholar
[264] P., Griffiths and J., Harris, Principles of Algebraic Geometry. Reprint of the 1978 original. Wiley Classics Library, John Wiley and Sons, Inc., New York, 1994.Google Scholar
[265] B., Gross and J., Harris, On Some Geometric Constructions Related to Theta Characteristics. Contributions to automorphic forms, geometry, and number theory, 279–311, Johns Hopkins University Press, Baltimore, MD, 2004.Google Scholar
[266] A., Grothendieck, Théorèmes de dualité pour les faisceaux algébriques cohérents, Sem. Bourbaki 149 (1957), 1–15.Google Scholar
[267] S., Grushevsky and R. Salvati, Manni, The Scorza correspondence in genus 3 (to appear).
[268] J., Guàrdia, On the Torelli Problem and Jacobian Nullwerte in genus 3, Mich. Math. J., 60 (2011), 51–65.Google Scholar
[269] S., Gundelfinger, Zur Theorie der ternäre cubische Formen, Math. Ann. 4 (1871), 144–63.Google Scholar
[270] S., Gundelfinger, Ueber das simulatente System von drei ternären quadratischen Formen, J. Reine Angew. Math. 80 (1875), 73–85.Google Scholar
[271] P., Hacking, S., Keel and J., Tevelev, Stable pair, tropical, and log canonical compactifications of moduli spaces of del Pezzo surfaces, Invent. Math. 178 (2009), 173–227.Google Scholar
[272] G., Halphen, Recherches sur les courbes planes du troisième degré, Math. Ann. 15 (1879), 359–79.Google Scholar
[273] G., Halphen, Sur les courbes planes du sixiéme degré a neuf points doubles, Bull. Soc. Math. France, 10 (1881), 162–72.Google Scholar
[274] J., Harris, Theta characteristics on algebraic curves, Trans. Amer. Math. Soc. 271 (1982), 611–38.Google Scholar
[275] J., Harris, Algebraic Geometry. A First Course, Graduate Texts in Mathematics, 133. Springer-Verlag, New York, 1995.Google Scholar
[276] J., Harris and L., Tu, On symmetric and skew-symmetric determinantal varieties, Topology 23 (1984), 71–84.Google Scholar
[277] J., Harris and I., Morrison, Moduli of Curves. Graduate Texts in Mathematics, 187. Springer-Verlag, New York, 1998.Google Scholar
[278] R., Hartshorne, Curves with high self-intersection on algebraic surfaces, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 111–25.Google Scholar
[279] R., Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York–Heidelberg, 1977.Google Scholar
[280] R., Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), 121–76.Google Scholar
[281] B., Hassett, Stable log surfaces and limits of quartic plane curves, Manuscripta Math. 100 (1999), 469–87.Google Scholar
[282] T., Hawkins, Line geometry, differential equations and the birth of Lie's theory of groups. The History of Modern Mathematics, Vol. I (Poughkeepsie, NY, 1989), 275–327, Academic Press, Boston, MA, 1989.Google Scholar
[283] A., Henderson, The Twenty-Seven Lines upon the Cubic Surface, Cambridge, 1911.Google Scholar
[284] Ch., Hermite, Extrait d'une lettre à Brioschi, J. Reine Angew. Math. 63 (1864), 32–3.Google Scholar
[285] O., Hesse, Ueber Elimination der Variabeln aus drei algebraischen Gleichungen von zweiten Graden, mit zwei Variabeln, J. für die Reine und Ungew. Math., 28 (1844), 68–96 [Gesammelte Werke, Chelsea Publ. Co., New York, 1972: pp. 345–404].Google Scholar
[286] O., Hesse, Ueber die Wendepunkten der Curven dritter Ordnung, J. Reine Angew. Math. 28 (1844), 97–107 [Gesammelte Werke, pp. 123–56].Google Scholar
[287] O., Hesse, Ueber die geometrische Bedeutung der lineären Bedingungsgleichung zwischen den Coefficienten einer Gleichung zweiten Grades, J. Reine Angew. Math. 45 (1853), 82–90. [Ges. Werke, pp. 297–306].Google Scholar
[288] O., Hesse, Ueber Determinanten und ihre Anwendungen in der Geometrie insbesondere auf Curven vierter Ordnung, J. Reine Angew. Math. 49 (1855), 243–64 [Ges. Werke, pp. 319–44].Google Scholar
[289] O., Hesse, Über die Doppeltangenten der Curven vierter Ordnung, J. Reine Angew. Math., 49 (1855), 279–332 [Ges. Werke, pp. 345–411].Google Scholar
[290] O., Hesse, Zu den Doppeltangenten der Curven vierter Ordnung, J. Reine Angew. Math., 55 (1855), 83–8 [Ges. Werke, pp. 469–74].Google Scholar
[291] D., Hilbert, Lettre addresseé à M. Hermite, Journ. de Math. (4) 4 (1888), 249–56. [Gesam. Abh. vol. II, 148–53].Google Scholar
[292] J., Hill, Bibliography of surfaces and twisted curves, Bull. Amer. Math. Soc. (2) 3 (1897), 133–46.Google Scholar
[293] F., Hirzebruch, The Hilbert modular group for the field Q(√5), and the cubic diagonal surface of Clebsch and Klein, Uspehi Mat. Nauk 31 (1976), no. 5 (191), 153–66.Google Scholar
[294] F., Hirzebruch, The ring of Hilbert modular forms for real quadratic fields in small discriminant. Modular Functions of One Variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), pp. 287–323. Lecture Notes in Math., Vol. 627, Springer, Berlin, 1977.Google Scholar
[295] N., Hitchin, Poncelet polygons and the Painlevé equations. Geometry and Analysis (Bombay, 1992), 151–85, Tata Inst. Fund. Res., Bombay, 1995.Google Scholar
[296] N., Hitchin, A lecture on the octahedron, Bull. London Math. Soc. 35 (2003), 577–600.Google Scholar
[297] N., Hitchin, Spherical harmonics and the icosahedron. Groups and Symmetries, 215–231, CRM Proc. Lecture Notes, 47, Amer. Math. Soc., Providence, RI, 2009.Google Scholar
[298] N., Hitchin, Vector bundles and the icosahedron. Vector bundles and complex geometry, 71–87, Contemp. Math., 522, Amer. Math. Soc., Providence, RI, 2010.Google Scholar
[299] W., Hodge and D., Pedoe, Methods of Algebraic Geometry, vols. I–III. Cambridge University Press, 1954 [Reprinted in 1994].Google Scholar
[300] M., Hoskin, Zero-dimensional valuation ideals associated with plane curve branches, Proc. London Math. Soc. (3) 6 (1956), 70–99.Google Scholar
[301] T., Hosoh, Automorphism groups of cubic surfaces, J. Algebra 192 (1997), 651–77.Google Scholar
[302] G., Humbert, Sur un complex remarquable de coniques et sur la surface du troisème ordre, J. de l'École Polytechnique, 64 (1894), 123–49.Google Scholar
[303] R., Hudson, Kummer's Quartic Surface, Cambridge University Press, 1905 [reprinted in 1990 with a forword by W. Barth].Google Scholar
[304] H., Hudson, Cremona Transformations in Plane and Space, Cambridge University Press, 1927.Google Scholar
[305] B., Hunt, The Geometry of Some Special Arithmetic Quotients. Lecture Notes in Mathematics, 1637. Springer-Verlag, Berlin, 1996.Google Scholar
[306] A., Hurwitz, Ueber algebraische Correspondenzen und das verallgeimeinert Correspondenzprinzip, Math. Ann. 28 (1887), 561–85.Google Scholar
[307] J., Hutchinson, The Hessian of the cubic surface, Bull. A. M. S. 5 (1897), 282–92.Google Scholar
[308] A., Iano-Fletcher, Working with weighted complete intersections. In: Explicit Birational Geometry of 3-folds, 101–73, London Math. Soc. Lecture Note Ser., 281, Cambridge University Press, Cambridge, 2000.Google Scholar
[309] A., Iarrobino, Punctual Hilbert schemes, Bull. Amer.Math. Soc. 78 (1972), 819–23.Google Scholar
[310] A., Iarrobino and V., Kanev, Power Sums, Gorenstein Algebras, and Determinantal Loci, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999.Google Scholar
[311] J., Igusa, On Siegel modular forms genus two. II, Amer. J. Math. 86 (1964), 392–412.Google Scholar
[312] A., Iliev and K., Ranestad, K3 surfaces of genus 8 and varieties of sums of powers of cubic fourfolds, Trans. Amer. Math. Soc. 353 (2001), 1455–68.
[313] E., Izadi, M. Lo, Giudice and G., Sankaran, The moduli space of étale double covers of genus 5 curves is unirational, Pacific J. Math. 239 (2009), 39–52.Google Scholar
[314] E., Izadi and G., Farkas, to appear.
[315] C., Jacobi, Beweis des Satzes dass eine Curventen Grades im Allgeimeinen (n – 2)(n2 – 9) Doppeltangenten hat, J. Reine Angew. Math., 40 (1850), 237–60.Google Scholar
[316] C., Jessop, A Treatise of the Line Complex, Cambridge University Press, 1903 [reprinted by Chelsea Publ. Co., New York, 1969].Google Scholar
[317] C., Jessop, Quartic Surfaces with Singular Points, Cambridge University Press, 1916.Google Scholar
[318] R., Jeurissen, C., van Os and J., Steenbrink, The configuration of bitangents of the Klein curve, Discrete Math. 132 (1994), 83–96.Google Scholar
[319] C., Jordan, Traité des Substitutions et Équations Algébriques, Paris, Gauthier-Villars, 1870.Google Scholar
[320] T., Józefiak, A., Lascoux and P., Pragacz, Classes of determinantal varieties associated with symmetric and skew-symmetric matrices. Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), 662–73.Google Scholar
[321] P., Joubert, Sur l'equation du sixieme degré, Comptes Rendus Hepdomadaires des Séances de l'Académie des Sciences, 64 (1867), 1025–9, 1081–5.Google Scholar
[322] H., Jung, Algebraische Flächen. Hannover, Helwig, 1925.Google Scholar
[323] R., Kane, Reflection Groups and Invariant Theory. CMS Books in Mathematics, Ouvrages de Mathématiques de la SMC, 5. Springer-Verlag, New York, 2001.Google Scholar
[324] S., Kantor, Theorie der Endlichen Gruppen von Eindeutigen Transformationen in der Ebene, Berlin, Mayer & Müller, 1895.Google Scholar
[325] S., Kantor, Theorie der linearen Strahlencomplexe in Raume von r Dimensionen, J. Reine Angew. Math. 118 (1897), 74–122.Google Scholar
[326] P., Katsylo, On the birational geometry of the space of ternary quartics. Lie groups, their discrete subgroups, and invariant theory, 95–103, Adv. Soviet Math., 8, Amer. Math. Soc., Providence, RI, 1992.Google Scholar
[327] P., Katsylo, On the unramified 2-covers of the curves of genus 3, in Algebraic Geometry and its Applications (Yaroslavl, 1992), Aspects of Mathematics, vol. E25, Vieweg, 1994, pp. 61–5.Google Scholar
[328] P., Katsylo, Rationality of the moduli variety of curves of genus 3, Comment. Math. Helv. 71 (1996), 507–24,Google Scholar
[329] J., Keum, Automorphisms of Jacobian Kummer surfaces, Cont. Math. 107 (1997), 269–88.Google Scholar
[330] S., Kleiman, Geometry on Grassmannians and applications to splitting bundles and smoothing cycles, Pub. Math. Inst. Hautes Études Sci. 36 (1969), 281–97.Google Scholar
[331] S., Kleiman, A generalized Teissier–Plücker formula. Classification of algebraic varieties (L'Aquila, 1992), 249–60, Contemp. Math.162, Amer. Math. Soc., Providence, RI, 1994.Google Scholar
[332] F., Klein, Vorlesungen über höhere Geometrie. Dritte Auflage. Bearbeitet und herausgegeben von W. Blaschke. Die Grundlehren der mathematischen Wissenschaften, Band 22. Springer-Verlag, Berlin, 1968.Google Scholar
[333] F., Klein, Zur Theorie der Liniencomplexe des ersten und Zwiter Grades, Math. Ann. 2 (1870), 198–226.Google Scholar
[334] F., Klein, Ueber Flächen dritter Ordnung, Math. Ann. 6 (1873), 551–81.Google Scholar
[335] F., Klein, Ueber die Transformation siebenter Ordnung der elliptischen Functionen, Math. Ann. 14 (1879), 428–71.Google Scholar
[336] F., Klein, Ueber die Transformation der allgemeinen Gleichung des Zweites Grades zwischen Linienem-Coordinaten auf eine canonische Form, Math. Ann. 23 (1884), 539–86.Google Scholar
[337] F., Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Leipzig, Teubner, 1884 [English translation by G. Morrice, Diover Publ. 1956; German reprint edited by P. Slodowy, Basel, Birkhüser, 1993].Google Scholar
[338] H., Kleppe and D., Laksov, The algebraic structure and deformation of pfaffian schemes, J. Algebra 64 (1980), 167–89.Google Scholar
[339] S., Koizumi, The ring of algebraic correspondences on a generic curve of genus g, Nagoya Math. J. 60 (1976), 173–80.Google Scholar
[340] J., Kollàr and S., Mori, Birational Geometry of Algebraic Varieties. With the collaboration of C. H., Clemens and A., Corti, Cambridge Tracts in Mathematics, 134. Cambridge University Press, Cambridge, 1998.Google Scholar
[341] J., Kollàr, K., Smith and A., Corti, Rational and Nearly Rational Varieties. Cambridge Studies in Advanced Mathematics, 92. Cambridge University Press, Cambridge, 2004.Google Scholar
[342] S., Kondō, The automorphism group of a generic Jacobian Kummer surface, J. Alg. Geom. 7 (1998), 589–609.Google Scholar
[343] S., Kondō, A complex hyperbolic structure for the moduli space of curves of genus three, J. Reine Angew. Math. 525 (2000), 219–32.Google Scholar
[344] N., Kravitsky, On the discriminant function of two commuting nonselfadjoint operators. Integral Equations Operator Theory 3 (1980), 97–124.Google Scholar
[345] A., Krazer, Lehrbuch der Thetafunktionen, Leipzig, 1903 (reprinted by Chelsea Publ. Co. in 1970).Google Scholar
[346] E., Kummer, Algemeine Theorie der gradlinigen Strahlsystems, J. Reine Angew. Math. 57 (1860), 187–230.Google Scholar
[347] E., Kummer, Ueber die algebraische Strahlensysteme insbesondere die erste und zweiten Ordnung, Berliner Abhandl. (1866), 1–120.Google Scholar
[348] E., Kummer, Ueber die Flächen vierten Grades, auf welchen Schaaren von Kegelschnitten liegen, J. Reine Angew. Math. 64 (1865), 66–76.Google Scholar
[349] Ph., La Hire, Sectiones Conicae, Paris, 1685.Google Scholar
[350] R., Lazarsfeld and A., Van de Ven, Topics in the Geometry of Projective Space. Recent work of F. L. Zak. With an addendum by Zak. DMV Seminar, 4. Birkhäuser Verlag, Basel, 1984.Google Scholar
[351] R., Lazarsfeld, Positivity in Algebraic Geometry, vol. I and vol. II, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 49. Springer-Verlag, Berlin, 2004.Google Scholar
[352] D., Lehavi, Any smooth plane quartic can be reconstructed from its bitangents, Israel J. Math. 146 (2005), 371–9.Google Scholar
[353] D., Lehavi and G., Ritzenthaler, An explicit formula for the arithmetic–geometric mean in genus 3, Experiment. Math. 16 (2007), 421–40.Google Scholar
[354] P., Le Barz, Géométrie énumérative pour les multisécantes. Variétés Analytiques Compactes (Colloq., Nice, 1977), pp. 116–67, Lecture Notes in Math., 683, Springer, Berlin, 1978.Google Scholar
[355] J., Le Potier and A., Tikhomirov, Sur le morphisme de Barth, Ann. Sci. École Norm. Sup. (4) 34 (2001), 573–629.Google Scholar
[356] D. T., , Computation of the Milnor number of an isolated singularity of a complete intersection. (Russian.)Funkcional. Anal. i Prilozhen. 8 (1974), no. 2, 45–9.Google Scholar
[357] A., Libgober, Theta characteristics on singular curves, spin structures and Rohlin theorem, Ann. Sci. École Norm. Sup. (4) 21 (1988), 623–35.Google Scholar
[358] S., Lie, Geometrie der Berüngstrastranformationen, Leipzig, 1896 [reprinted by Chelsea Co. New York, 1977 and 2005].Google Scholar
[359] J., Lipman, Desingularization of two-dimensional schemes, Ann. Math. (2) 107 (1978), 151–207.Google Scholar
[360] M., Livsic, Cayley–Hamilton theorem, vector bundles and divisors of commuting operators, Integral Equations Operator Theory, 6 (1983), 250–373.Google Scholar
[361] M., Livsic, N., Kravitsky, A., Markus and V., Vinnikov, Theory of Commuting Non-selfadjoint Operators. Mathematics and its Applications, 332. Kluwer Academic Publishers Group, Dordrecht, 1995.Google Scholar
[362] F., London, Über die Polarfiguren der ebenen Curven dritter Ordnung, Math. Ann. 36 (1890), 535–84.Google Scholar
[363] E., Looijenga, Cohomology of M3 and M13. Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), 205–228, Contemp. Math., 150, Amer. Math. Soc., Providence, RI, 1993.Google Scholar
[364] E., Looijenga, Invariants of quartic plane curves as automorphic forms. Algebraic Geometry, 107–120, Contemp. Math., 422, Amer. Math. Soc., Providence, RI, 2007.Google Scholar
[365] G., Loria, Il Passato ed il Presente delle Principali Teorie Geometriche, Torino, Carlo Clausen, 1896.Google Scholar
[366] C., Lossen, When does the Hessian determinant vanish identically? (On Gordan and Noether's proof of Hesse's claim), Bull. Braz. Math. Soc. (N.S.) 35 (2004), 71–82.Google Scholar
[367] J., Lurie, On simply laced Lie algebras and their minuscule representations, Comment. Math. Helv. 76 (2001), 515–75.Google Scholar
[368] J., Lüroth, Einige Eigenschaften einer gewissen Gattung von Curven vierten Ordnung, Math. Ann. 1 (1869), 37–53.Google Scholar
[369] F. S., Macaulay, The Algebraic Theory of Modular Systems, Cambridge tracts in mathematics and mathematical physics, 19, Cambridge University Press, 1916.Google Scholar
[370] C., MacLaurin, Geometria Organica sive Descriptivo Linearum Curvarum Universalis, London, 1720.Google Scholar
[371] C., MacLaurin, De Linearum Geometricarum Proprietatibus Generalibus Tractatus, Appendix to Treatise of Algebra, London, 1748.Google Scholar
[372] L., Magnus, Sammlung von Aufgaben und Lehrsätze aus Analytische Geometrie des Raumes, Berlin, 1833.Google Scholar
[373] Yu, I. Manin, Cubic Forms: Algebra, Geometry, Arithmetic. Translated from Russian by M., Hazewinkel. North-Holland Mathematical Library, Vol. 4. North-Holland Publishing Co., 1986.Google Scholar
[374] R., Mathews, Cubic curves and desmic surfaces, Trans. Amer. Math. Soc. 28 (1926), 502–22.Google Scholar
[375] R., Mathews, Cubic curves and desmic surfaces. II. Trans. Amer. Math. Soc. 30 (1928), 19–23.Google Scholar
[376] M., Mella, Singularities of linear systems and the Waring problem, Trans. Amer. Math. Soc. 358 (2006), 5523–38.Google Scholar
[377] M., Mella, Base loci of linear systems and the Waring problem, Proc. Amer. Math. Soc. 137 (2009), 91–8.Google Scholar
[378] F., Melliez, Duality of (1,5)-polarized abelian surfaces, Math. Nachr. 253 (2003), 55–80.Google Scholar
[379] F., Melliez and K., Ranestad, Degenerations of (1, 7)-polarized abelian surfaces, Math. Scand. 97 (2005), 161–87.Google Scholar
[380] J., Mérindol, Les singularités simples elliptiques, leurs déformations, les surfaces de del Pezzo et les transformations quadratiques, Ann. Sci. École Norm. Sup. (4) 15 (1982), 17–44.Google Scholar
[381] W., Meyer, Speziele Algebraische Flächen, Enzyk. Math. Wiss. BIII, C10. Leipzig, Teubner, 19211928.Google Scholar
[382] W., Meyer, Apolarität und Rationale Curven. Eine Systematische Voruntersuchung zu einer Allgemeinen Theorie der Linearen Räume. Tübingen, F. Fuss, 1883.Google Scholar
[383] E. P., Miles and E., Williams, A basic set of homogeneous harmonic polynomials in k variables, Proc. Amer. Math. Soc. 6 (1955), 191–4.Google Scholar
[384] W., Milne and D., Taylor, Relation between apolarity and the pippian–quippian syzygetic pencil, Proc. London Math. Soc. 20 (1922), 101–6.Google Scholar
[385] J., Milnor, Singular Points of Complex Hypersurfaces. Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968.Google Scholar
[386] A., Möbius, Über eine besondere Art dualer Verhältnisse zwischen Figuren in Raume, J. Reine Angew. Math. 10 (1833), 317–41.Google Scholar
[387] D., Montesano, Sui complexe di rette dei terzo grado, Mem. Accad. Bologna (2) 33 (1893), 549–77.Google Scholar
[388] F., Morley, On the Lüroth quartic curve, Amer. J. Math. 41 (1919), 279–82.Google Scholar
[389] F., Morley and F. V., Morley, Inversive Geometry, Ginn and Company, Boston–New York, 1933.Google Scholar
[390] M., Moutard, Note sur la transformation par rayons vecteurs réciproques et sur les surfaces anallagmatiques du quatrieéme ordre, Nouv. Ann. Amth. (2) 3 (1864), 306–9.Google Scholar
[391] T., Muir, A Treatise on the Theory of Determinants, Dover, New York, 1960.Google Scholar
[392] S., Mukai and H., Umemura, Minimal rational threefolds. Algebraic Geometry (Tokyo/Kyoto, 1982), 490–518, Lecture Notes in Math., 1016, Springer, Berlin, 1983.Google Scholar
[393] S., Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group. Invent. Math. 94 (1988), 183–221.Google Scholar
[394] S., Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), no. 9, 3000–2.Google Scholar
[395] S., Mukai, Fano 3-folds. Complex Projective Geometry (Trieste, 1989/Bergen, 1989), 255–63, London Math. Soc. Lecture Note Ser., 179, Cambridge University Press, Cambridge, 1992.Google Scholar
[396] S., Mukai, Plane quartics and Fano threefolds of genus twelve. The Fano Conference, 563–572, Univ. Torino, Turin, 2004.Google Scholar
[397] H., Müller, Zur Geometrie auf den Flächen zweiter Ordnung, Math. Ann. 1 (1869), 407–23.Google Scholar
[398] D., Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 5–22.Google Scholar
[399] D., Mumford, Lectures on Curves on an Algebraic Surface. With a section by G. M., Bergman. Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, NJ, 1966.Google Scholar
[400] D., Mumford, Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5. Bombay; Oxford University Press, London, 1970.Google Scholar
[401] D., Mumford, Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. (4) 4 (1971), 181–92.Google Scholar
[402] D., Mumford, Prym varieties. I. Contributions to Analysis (a Collection of Papers dedicated to Lipman Bers), pp. 325–50. Academic Press, New York, 1974.Google Scholar
[403] M., Nagata, On rational surfaces. II, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33 (1960/1961), 271–93.Google Scholar
[404] M., Narasimhan and G., Trautmann, Compactification of MP3 (0, 2) and Poncelet pairs of conics, Pacific J. Math. 145 (1990), 255–365.Google Scholar
[405] I., Naruki, Über die Kleinsche Ikosaeder-Kurve sechsten Grades, Math. Ann. 231 (1977/1978), 205–16.Google Scholar
[406] I., Naruki, Cross ratio variety as a moduli space of cubic surfaces (with Appendix by E. Looijenga), Proc. London Math. Soc. 44 (1982), 1–30.Google Scholar
[407] I., Newton, Enumeratio Linearum Terti Ordinis, Appendix to Opticks, London, 1704, [translated to French in [157]].Google Scholar
[408] V., Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR, Ser. Mat. 43 (1979), 111–77.Google Scholar
[409] M., Noether, Über Flächen, welche Schaaren rationaler Curven besitzen, Math. Ann. 3 (1870), 161–226.Google Scholar
[410] M., Noether, Zur Theorie der eindeutigen Ebenentransformationen, Math. Ann. 5 (1872), 635–9.Google Scholar
[411] C., Okonek, 3-Mannigfaltigkeiten im P5 und ihre zugehörigen stabilen Garben, Manuscripta Math. 38 (1982), 175–99.Google Scholar
[412] C., Okonek, Über 2-codimensional Untermanningfaltigkeiten von Grad 7 in ℙ4 und ℙ5, Math. Zeit. 187 (1984), 209–19.Google Scholar
[413] G., Ottaviani, On 3-folds in P5 which are scrolls, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 451–71.Google Scholar
[414] G., Ottaviani, Symplectic bundles on the plane, secant varieties and Lüroth quartics revisited. Vector Bundles and Low Codimensional Subvarieties: State of the Art and Recent Developments, 315–352, Quad. Mat., 21, Dept. Math., Seconda Univ. Napoli, Caserta, 2007.Google Scholar
[415] G., Ottaviani, An invariant regarding Waring's problem for cubic polynomials, Nagoya Math. J., 193 (2009), 95–110.Google Scholar
[416] G., Ottaviani and E., Sernesi, On the hypersurface of Lüroth quartics, Michigan Math. J. 59 (2010), 365–94.Google Scholar
[417] G., Ottaviani and E., Sernesi, On singular Lüroth quartics. Sci. China Math. 54(8) (2011), 1757–1766.Google Scholar
[418] F., Palatini, Sui sistemi lineari di complessi lineari di rette nello spazio a cinque dimensioni, Atti Istituto Veneto 60 [(8) 3], (1901) 371–83.Google Scholar
[419] F., Palatini, Sui complesse lineari di rette negli iperspazi, Giornale Matematiche 41 (1903), 85–96.Google Scholar
[420] F., Palatini, Sulla rappresentazione delle forme ed in particolare della cubica quinaria con la somma di potenze di forme lineari, Atti Accad. Reale Sci. Torino, 38 (1903), 43–50.Google Scholar
[421] F., Palatini, Sulla rappresentazione delle forme ternarie mediante la somma di potenza di forme lineari, Rendiconti Atti Accad. Reale Lincei, 12 (1903), 378–84.Google Scholar
[422] I., Pan, Une remarque sur la génération du groupe de Cremona. Bol. Soc. Brasil. Mat. (N.S.) 30 (1999), 95–8.Google Scholar
[423] I., Pan, On birational properties of smooth codimension two determinantal varieties, Pacific J. Math. 237 (2008), 137–50.Google Scholar
[424] I., Pan, Les applications rationnelles de Pn déterminantielles de degré n. Ann. Acad. Brasil. Cienc. 71 (1999), 311–19.Google Scholar
[425] B., Pascal, Essais pour les Coniques, Oeuvres Complètes de Blaise Pascal, v. II, édition de Ch. Lahure, Paris, 1858.Google Scholar
[426] E., Pascal, Repertorium der Höheren Mathematik, Bd.2: Geometrie, Teubniger, Leipzig, 1910.Google Scholar
[427] M., Pash, Ueber die Brennflächen der strahlsysteme und die Singularittenfläche, J. Reine Angew. Math. 67 (1873), 156–69.Google Scholar
[428] U., Perazzo, Sopra una forma cubia con 9 rette doppie dello spazio a cinque dimensioni, e i correspondenti complessi cubici di rette nello spazio ordinario. Atti Accad. Reale Torino, 36 (1901), 891–5.Google Scholar
[429] U., Persson, Configurations of Kodaira fibers on rational elliptic surfaces. Math. Z. 205 (1990), 1–47.Google Scholar
[430] C., Peskine and L., Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271–302.Google Scholar
[431] R., Pieni, Numerical characters of a curve in projective n-space. Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 475–95. Sijthoff and Noordhoff, Alphen aan den Rijn, 1977.Google Scholar
[432] R., Piene, Some formulas for a surface in P3. Algebraic Geometry, Proc. Sympos., Univ. Tromsø, Tromsø, 1977, pp. 196–235, Lecture Notes in Mathematics., 687, Springer, Berlin, 1978.Google Scholar
[433] H., Pinkham, Simple elliptic singularities, del Pezzo surfaces and Cremona transformations. Several Complex Variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975), pp. 69–71. Amer. Math. Soc., Providence, RI, 1977.Google Scholar
[434] H., Pinkham, Singularités de Klein. Séminaire sur les Singularités des Surfaces. Edited by Michel, Demazure, Henry Charles, Pinkham and Bernard, Teissier. Lecture Notes in Mathematics, 777. Springer, Berlin, 1980, pp. 1–20.Google Scholar
[435] H., Pinkham, Singularités Rationelles de Surfaces. Séminaire sur les Singularités des Surfaces. Ed. Michel, Demazure, Henry Charles, Pinkham and Bernard, Teissier. Lecture Notes in Mathematics, 777. Springer, Berlin, 1980, pp. 147–78.Google Scholar
[436] J., Piontkowski, Theta-characteristics on singular curves, J. Lond. Math. Soc. 75 (2007), 479–94.Google Scholar
[437] D., Plaumann, B., Sturmfels and C., Vinzant, Quartic curves and their bitangents. J. Symbolic Comput. 46 (2011), 712–33.Google Scholar
[438] J., Plücker, Ueber die allgemeinen Gezetze, nach welchen irgend zwei Flächen einen Contact der vershiedenenen Ordnungen haben, J. für Reine und Ungew. Math. 4 (1829), 349–90.Google Scholar
[439] J., Plücker, System der Geometrie des Raumes in Neuer Analytischer Behandlungsweise, Düsseldorf, Schaub'sche Buchhandlung, 1846.Google Scholar
[440] J., Plücker, Neue Geometrie des Raumes Gegründet auf die Betrachtung der Geraden Linie als Raumelement, Leipzig, B.G. Teubner, 18681869.Google Scholar
[441] J., Plücker, Über ein neues Coordinatsystem, J. Reine Angew. Math., 5 (1830), 1–36 [Ges. Abh. n.9, 124–158].Google Scholar
[442] J., Plücker, Solution d'une question fundamentale concernant la théorie générale des courbes, J. Reine Angew. Math. 12 (1834), 105–8 [Ges. Abh. n.21, 298–301].Google Scholar
[443] J., Plücker, Theorie der Algebraischen Curven, Bonn, Marcus. 1839.Google Scholar
[444] J., Plücker, Julius Plückers Gesammelte Wissenschaftliche Abhandlungen, hrsg. von A. Schoenflies und Fr. Pockels. Leipzig, Teubner, 18951896.Google Scholar
[445] I., Polo-Blanco, M., van der Put and J., Top, Ruled quartic surfaces, models and classification, Geom. Dedicata 150 (2011), 151–80.Google Scholar
[446] J.-V., Poncelet, Traite sur les Propriétés Projectives des Figures, Paris, 1822.Google Scholar
[447] C., Ramanujam, Remarks on the Kodaira vanishing theorem, J. Indian Math. Soc. 36 (1972), 41–51.Google Scholar
[448] K., Ranestad and F.-O., Schreyer, Varieties of sums of powers, J. Reine Angew. Math. 525 (2000), 147–81.Google Scholar
[449] S., Recillas, Jacobians of curves with g14's are the Prym's of trigonal curves, Bol. Soc. Mat. Mexicana (2) 19 (1974), 9–13.Google Scholar
[450] C., Rego, The compactified Jacobian, Ann. Scient. Éc. Norm. Sup. (4) 13 (1980), 211–23.Google Scholar
[451] M., Reid, Undergraduate Algebraic Geometry. London Math. Society Student Texts, 12. Cambridge University Press, Cambridge, 1988.Google Scholar
[452] M., Reid, Chapters on Algebraic Surfaces. Complex Algebraic Geometry, 161–219, Park City Lecture notes, Ed. János, Kollár. IAS/Park City Mathematics Series, 3. American Mathematical Society, Providence, RI, 1997.Google Scholar
[453] M., Reid, Nonnormal del Pezzo surfaces, Publ. Res. Inst. Math. Sci. 30 (1994), 695–727.Google Scholar
[454] B., Reichstein and Z., Reichstein, Surfaces parameterizing Waring presentations of smooth plane cubics, Michigan Math. J., 40 (1993), 95–118.Google Scholar
[455] T., Reye, Die Geometrie der Lage. 3 vols., Hannover, C. Rümpler, 18771880.Google Scholar
[456] T., Reye, Trägheits- und höhere Momente eines Massensystemes in Bezug auf Ebenen, J. Reine Angew. Math. 72 (1970), 293–326.Google Scholar
[457] T., Reye, Geometrische Beweis des Sylvesterschen Satzes:“Jede quaternäre cubische Form is darstbellbar als Summe von fünf Cuben linearer Formen”, J. Reine Angew. Math. 78 (1874), 114–22.Google Scholar
[458] T., Reye, Über Systeme und Gewebe von algebraischen Flächen, J. Reine Angew. Math. 82 (1976), 1–21.Google Scholar
[459] T., Reye, Ueber lineare Systeme und Gewebe von Flächen zweiten Grades, J. Reine Angew. Math. 82 (1976), 54–83.Google Scholar
[460] T., Reye, Ueber Polfünfecke und Polsechsecke räumlicher Polarsysteme, J. Reine Angew. Math. 77 (1874), 263–88.Google Scholar
[461] T., Reye, Ueber lineare Mannigfaltigkeiten projectiver Ebenbüschel und collinearer B”undel oder Räume, J. Reine Angew. Math. I 104 (1889), 211–40; II 106 (1890), 30–47; III 106 (1890), 315–29; IV 107(1891), 162–78; V–VI 108 (1891), 89–124.Google Scholar
[462] H., Richmond, On canonical forms. Quart. J. Math. 33 (1902), 331–40.Google Scholar
[463] H. W., Richmond, Concerning the locus Σ(t3r) = 0; Σ(tr) = 0(r = 1, 2, 3, 4, 5, 6), Quart. J. Math. 34 (1902), 117–54.Google Scholar
[464] H. W., Richmond, On the reduction of the general ternary quintic to Hilbert's canonical form, Proc. Cambridge Phil. Soc. 13 (1906), 296–7.Google Scholar
[465] B., Riemann, Zur Theorie der Abelschen Funktionen für den Fall p = 3, Werke, Leipzig, 1876, 466–72.Google Scholar
[466] C., Rodenberg, Zur Classification der Flächen dritter Ordnung, Math. Ann. 14 (1879), 46–110.Google Scholar
[467] R., Rodriguez and V., González-Aguilera, Fermat's quartic curve, Klein's curve and the tetrahedron. Extremal Riemann Surfaces (San Francisco, CA, 1995), 43–62, Contemp. Math., 201, Amer. Math. Soc., Providence, RI, 1997.Google Scholar
[468] T., Room, The Schur quadrics of a cubic surface (I), (II), J. London Math. Soc. 7 (1932), 147–54, 154–60.Google Scholar
[469] T., Room, Self-transformations of determinantal quartic surfaces, J. London Math. Soc. 57 (1950), Parts I–IV, 348–400.Google Scholar
[470] T., Room, The Geometry of Determinantal Loci, Cambridge University Press. 1938.Google Scholar
[471] J., Rosanes, Ueber diejenigen rationalen Substitutionen, welche eine rationale Umkehrung zulassen, J. Reine Angew. Math. 73 (1871), 97–110.Google Scholar
[472] J., Rosanes, Ueber ein Princip der Zuordnung algebraischer Formen, J. Reine Angew. Math. 76 (1973), 312–31.Google Scholar
[473] J., Rosanes, Ueber Systeme von Kegelschnitten, Math. Ann. 6 (1873), 264–313.Google Scholar
[474] J., Rosenberg, The geometry of moduli of cubic surfaces, Ph.D. Dissertation. Univ. Michigan, 1999.Google Scholar
[475] P., Roth, Beziehungen zwischen algebraischen Gebilden vom Geschlechte drei und vier, Monatsh. Math. 22 (1911), 64–88.Google Scholar
[476] D., Rowe, The early geometrical works of Sophus Lie and Felix Klein. The History of Modern Mathematics, Vol. I (Poughkeepsie, NY, 1989), 209–73, Academic Press, Boston, MA, 1989.Google Scholar
[477] F., Russo, On a theorem of Severi, Math. Ann. 316 (2000), 1–17.Google Scholar
[478] N. Saavedra, Rivano, Finite geometries in the theory of theta characteristics, Enseignement Math. (2) 22 (1976), 191–218.Google Scholar
[479] G., Salmon, On the degree of the surface reciprocal to a given one, Cambridge and Dublin Math. J. 2 (1847), 65–73.Google Scholar
[480] G., Salmon, On the triple tangent planes to a surface of the third order, Cambridge and Dublin Math. J., 4 (1849), 252–60.Google Scholar
[481] G., Salmon, On a class of ruled surface, Cambridge and Dublin Math. J. 8 (1853), 45–6.Google Scholar
[482] G., Salmon, On the cone circumscribing a surface of the mth order, Cambridge and Dublin Math. J. 4 (1849), 187–90.Google Scholar
[483] G., Salmon, On the degree of the surface reciprocal to a given one, Trans. Royal Irish Acad. 23 (1859), 461–88.Google Scholar
[484] G., Salmon, On quaternary cubics, Phil. Trans. R. Soc. London, 150 (1860), 229–39.Google Scholar
[485] G., Salmon, A Treatise on Conic Sections, 3rd edition, London, Longman, Brown, Green and Longmans, 1855 (reprinted from the 6th edition by Chelsea Publ. Co., New York, 1954, 1960).Google Scholar
[486] G., Salmon, A Treatise on Higher Plane Curves, Dublin, Hodges and Smith, 1852 (reprinted from the 3d edition by Chelsea Publ. Co., New York, 1960).Google Scholar
[487] G., Salmon, A Treatise on the Analytic Geometry of Three Dimension, Hodges, Foster and Co. Dublin. 1862 (5th edition, revised by R. Rogers, vol. 1–2, Longmans, Green and Co., 1912–15; reprinted by Chelsea Publ. Co. vol. 1, 7th edition, 1857, vol. 2, 5th edition, 1965).Google Scholar
[488] G., Salmon, Analytische Geometrie von Raume, B.1–2, German translation of the 3rd edition by W., Fielder, Leipzig, Teubner, 18741880.Google Scholar
[489] N., Schappacher, Développement de la Loi de Groupe sur une Cubique. Séminaire de Théorie des Nombres, Paris 1988–9, 159–84, Progr. Math., 91, Birkhäuser Boston, Boston, MA, 1990.Google Scholar
[490] L., Schläfli, Über die Resultante eines Systemes mehrerer algebraische Gleichungen, Denkschr. der Kaiserlicjer Akad. der Wiss., Math-naturwiss. klasse, 4 (1852) [Ges. Abhandl., Band 2, 2–112, Birkhäuser Verlag, Basel, 1953].Google Scholar
[491] L., Schläfli, An attempt to determine the twenty-seven lines upon a surface of the third order and to divide such surfaces into species in reference to the reality of the lines upon the surface, Quart. J. Math., 2 (1858), 55–65, 110–21.Google Scholar
[492] L., Schläfli, On the distributionn of surfaces of the third order into species, in reference to the absence or presense of singular points, and the reality of their lines, Phil. Trans. R. Soc. London, 6 (1863), 201–41.Google Scholar
[493] O., Schlesinger, Ueber conjugierte Curven, insbesondere über die geometrische Relation zwischen einer Curve dritter Ordnung und einer zu ihr conjugirten Curve dritter Klasse, Math. Ann. 30 (1887), 455–77.Google Scholar
[494] I., Schoenberg, Mathematical Time Exposure, Mathematical Association of America, Washington, DC, 1982.Google Scholar
[495] P., Schoute, On the relation between the vertices of a definite six-dimensional polytope and the lines of a cubic surface, Proc. Royal Acad. Sci. Amsterdam, 13 (1910), 375–83.Google Scholar
[496] F.-O., Schreyer, Geometry and algebra of prime Fano 3-folds of genus 12, Compositio Math. 127 (2001), 297–319.Google Scholar
[497] H., Schröter, Die Theorie der ebenen Kurven der dritter Ordnung, Teubner, Leipzig, 1888.Google Scholar
[498] H., Schubert, Die n-dimensionalen Verallgemeinerungen der fundamentalen Anzahlen unseres Raums, Math. Ann. 26 (1886), 26–51.Google Scholar
[499] H., Schubert, Anzahl-Bestimmungen für Lineare Räume Beliebiger dimension, Acta Math. 8 (1886), 97–118.Google Scholar
[500] F., Schur, Über die durch collineare Grundgebilde erzeugten Curven und Flächen, Math. Ann. 18 (1881), 1–33.Google Scholar
[501] H., Schwarz, Ueber die geradlinigen Flächen fünften Grades, J. Reine Angew. Math. 67 (1867), 23–57.Google Scholar
[502] R. L. E., Schwarzenberger, Vector bundles on the projective plane, Proc. London Math. Soc. (3) 11 (1961), 623–40.Google Scholar
[503] G., Scorza, Un nuovo teorema sopra le quartiche piane generali, Math. Ann. 52, (1899), 457–61.Google Scholar
[504] G., Scorza, Sopra le corrsispondenze (p, p) esisnti sulle curve di genere p a moduli generali, Atti Accad. Reale Sci. Torino, 35 (1900), 443–59.Google Scholar
[505] G., Scorza, Intorno alle corrispondenze (p, p) sulle curve di genere p e ad alcune loro applicazioni, Atti Accad. Reale Sci. Torino, 42 (1907), 1080–9.Google Scholar
[506] G., Scorza, Sopra le curve canoniche di uno spazio lineaire quelunque e sopra certi loro covarianti quartici, Atti Accad. Reale Sci. Torino, 35 (1900), 765–73.Google Scholar
[507] B., Segre, Studio dei complessi quadratici di rette di S4, Atti Ist. Veneto 88 (19281929), 595–649.Google Scholar
[508] B., Segre, The Non-singular Cubic Surfaces; a New Method of Investigation with Special Reference to Questions of Reality, Oxford, The Clarendon Press, 1942.Google Scholar
[509] C., Segre, Un' osservazione relativa alla riducibilità delle trasformazioni Cremoniane e dei sistemi lineari di curve piane per mezzo di trasformazioni quadratiche, Realle Accad. Scienze Torino, Atti 36 (1901), 645–51. [Opere, Edizioni Cremonese, Roma. 1957–1963: v. 1, n. 21].Google Scholar
[510] C., Segre, Étude des différentes surfaces du 4e ordre à conique double ou cuspidale, Math. Ann. 24 (1884), 313–444 [Opere: v. 3, n. 51].Google Scholar
[511] C., Segre, Sulle varietà cubica con dieci punti doppi dello spazio a quattro dimensioni, Atti Accad. Sci. Torino 22 (1886/1887) 791–801 [Opere: v. 4, n. 63].Google Scholar
[512] C., Segre, Studio sulle quadriche in uno spazio lineare ad un numero qualunque di dimensioni, Mem. Reale Accad. di Torino, 36 (1883), 3–86 [Opere: v. 3, n. 42].Google Scholar
[513] C., Segre, Alcune considerazioni elementari sull' incidenza di rette e piani nello spazio a quattro dimensioni, Rend. Circ. Mat. Palermo. 2 (1888), 45–52 [Opere: v. 4, n. 54].Google Scholar
[514] C., Segre, Intorno alla storia del principo di corrispondenza e dei sistemi di curve, Bibliotheca Mathematica, Folge 6 (1892), 33–47 [Opere, vol. 1, pp. 186–97].Google Scholar
[515] C., Segre, Gli ordini delle varietà che annullano i determinanti dei diversi gradi estratti da una data matrice. Atti Acc. Lincei, Rend. (5) 9 (1900), 253–60 [Operem v. IV, pp. 179–87].Google Scholar
[516] C., Segre, Sur la génération projective des surfaces cubiques, Archiv der Math. und Phys. (3) 10 (1906), 209–15 (Opere, v. IV, pp. 188–96).Google Scholar
[517] C., Segre, Mehrdimensional Räume, Encyklopädia der Mathematische Wissenschaften, B. III Geometrie, Part C7, pp. 769–972, Leipzig, Teubner, 19031915.Google Scholar
[518] C., Segre, Sul una generazione dei complessi quadratici di retter del Battaglini, Rend. Circ. Mat. di Palermo 42 (1917), 85–93.Google Scholar
[519] J., Semple and L., Roth, Introduction to Algebraic Geometry. Oxford, Clarendon Press, 1949 (reprinted in 1985).Google Scholar
[520] J., Semple and G., Kneebone, Algebraic Projective Geometry. Reprint of the 1979 edition. Oxford Classic Texts in the Physical Sciences. The Clarendon Press, Oxford University Press, New York, 1998.Google Scholar
[521] J.-P., Serre, Groupes Algébriques et Corps de Classes. Publications de l'institut de mathématique de l'université de Nancago, VII. Hermann, Paris 1959 [2nd edition, 1984, English translation by Springer-Verlag, 1988].Google Scholar
[522] P., Serret, Géométrie de Direction, Gauthiere-Villars, Paris, 1869.Google Scholar
[523] I. R., Shafarevich, Basic Algebraic Geometry 1, Varieties in Projective Space. Second edition. Translated from the 1988 Russian edition and with notes by Miles, Reid. Springer-Verlag, Berlin, 1994.Google Scholar
[524] G., Shephard and J., Todd, Finite unitary reflection groups, Canadian J. Math. 6 (1954), 274–304.Google Scholar
[525] N., Shepherd-Barron, Invariant theory for S5 and the rationality of M6, Compositio Math. 70 (1989), 13–25.Google Scholar
[526] T., Shioda, On the graded ring of invariants of binary octavics, Amer. J. Math. 89 (1967), 1022–46.Google Scholar
[527] The Eightfold Way. The Beauty of Klein's Quartic Curve, edited by Silvio, Levy. Mathematical Sciences Research Institute Publications, 35. Cambridge University Press, Cambridge, 1999.
[528] V., Snyder, A., Black, A., Coble et al. Selected Topics in Algebraic Geometry. Second edition. Chelsea Publ. Co., New York, 1970.Google Scholar
[529] D., Sommeville, Analytical Conics, G. Bell and Sons, London, 1933.Google Scholar
[530] D., Sommerville, Analytic Geometry of Three Dimension, Cambridge University Press, 1934.Google Scholar
[531] C., Sousley, Invariants and covariants of the Cremona cubic surface, Amer. J. Math. 39 (1917), 135–45.Google Scholar
[532] T., Springer, Invariant Theory, Lecture Notes in Mathematics, Vol. 585. Springer-Verlag, Berlin-New York, 1977.Google Scholar
[533] G., von Staudt, Geometrie der Lage, Nürnberg, Bauer und Raspe, 1847.Google Scholar
[534] J., Steiner, Geometrische Lehrsätze, J. Reine Angew. Math. 32 (1846), 182–4 [Gesammeleter Werke, B. II, 371–3].Google Scholar
[535] J., Steiner, Allgemeine Eigenschaftern der algebraischen Curven, J. Reine Angew. Math., 47 (1854), 1–6 [Gesammeleter Werke, Chelsea Publ. Co., New York, 1971, B. II, 495–200].Google Scholar
[536] J., Steiner, Über solche algebraische Curven, welche einen Mittelpunct haben, und über darauf bezügliche Eigenschaften allgemeiner Curven; sowie über geradlinige Transversalen der letztern, J. Reine Angew. Math. 47 (1854), 7–105 [Gesammeleter Werke, B. II, 501–96].Google Scholar
[537] J., Steiner, Eigenschaftern der Curven vierten Grade r üchsichtlich ihrer Doppeltangenten, J. Reine Angew. Math., 49 (1855), 265–72 [Gesammeleter Werke, B. II, 605–12].Google Scholar
[538] J., Steiner, Ueber die Flächen dritten Grades, J. Reine Angew. Math., 53 (1856), 133–41 (Gesammelte Werke, Chelsea, 1971, vol. II, pp. 649–59).Google Scholar
[539] C., Stephanos, Sur les systémes desmique de trois tétraèdres, Bull. Sci. Math. Ast., 3 (1879), 424–56.Google Scholar
[540] J., Stipins, On finite k-nets in the complex projective plane, thesis (Ph.D.), University of Michigan, 2007. 83 pp. ProQuest LLC, Thesis.Google Scholar
[541] V., Strassen, Rank and optimal computation of generic tensors, Linear Algebra Appl. 52/53 (1983), 645–85.Google Scholar
[542] R., Sturm, Synthetische Untersuchungen über Flächen dritter Ordnung, Teubner, Leipzig, 1867.Google Scholar
[543] R., Sturm, Das Problem der Projectivität und seine Anwendung auf die Flächen zweiten Grades, Math. Ann. 1 (1869), 533–74.Google Scholar
[544] R., Sturm, Die Gebilde ersten und zweiten Grades der liniengeometrie in synthetischer Behandlung, Leipzig, B.G. Teubner, 1892/1896.Google Scholar
[545] R., Sturm, Die Lehre von den Geometrischen Verwandtschaften, 4 vols. Leipzig, B. G. Teubner, 1908/1909.Google Scholar
[546] J., Sylvester, An enumeration of the contacts of lines and surfaces of the second order, Phil. Mag. 1 (1851), 119–40 [Collected Papers: I, no. 36].Google Scholar
[547] J., Sylvester, On the theory of the syzygetic relations of two rational integral functions, Phil. Trans. Cambridge, 143 (1853), 545.Google Scholar
[548] J., Sylvester, Sketch of a memoir on elimination, transformation, and canonical forms, Cambridge and Dublin Math. J., 6 (1851), 186–200 [Collected papers: I, no. 32].Google Scholar
[549] J., Sylvester, The Collected Mathematical Papers of James Joseph Sylvester, 4 vols., Cambridge University Press, 19041912.Google Scholar
[550] H., Takagi and F., Zucconi, Spin curves and Scorza quartics, Math. Ann. 349 (2011), 623–45.Google Scholar
[551] B., Teissier, Résolution simultanée-II. Résolution simultanée et cylces evanescents, in Séminaire sur les Singularités des Surfaces, ed. by M., Demazure, H., Pinkham and B., Teissier. Lecture Notes in Mathematics, 777. Springer, Berlin, 1980, pp. 82–146.Google Scholar
[552] A., Terracini, Sulla rappresentazione delle coppie di forme ternarie mediante somme di potenze di forme lineari, Ann. Math. Pura Appl. (3), 24 (1915), 1–10.Google Scholar
[553] A., Terracini, Sulla rappresentazione delle forme quaternarie mediante somme di potenze di forme lineari, Atti Accad. Reale Sci. Torino, 51 (1916), 643–53.Google Scholar
[554] A., Terracini, Sulle Vk per cui la varietà degli Sh(h + 1)-seganti ha dimensione minore dell' ordinario, Rendiconti Circ. Mat. di Palermo, 31 (1911), 392–6.Google Scholar
[555] E., Tevelev, Projective Duality and Homogeneous Spaces. Encyclopaedia of Mathematical Sciences, 133. Invariant Theory and Algebraic Transformation Groups, IV. Springer-Verlag, Berlin, 2005.Google Scholar
[556] H., Thomsen, Some invariants of the ternary quartic, Amer. J. Math. 38 (1916), 249–58.Google Scholar
[557] E., Toeplitz, Ueber ein Flächennetz zweiter Ordnung, Math. Ann. 11 (1877), 434–63.Google Scholar
[558] G., Timms, The nodal cubic and the surfaces from which they are derived by projection, Proc. R. Soc. London,(A)119 (1928), 213–48.Google Scholar
[559] A., Tyurin, The intersection of quadrics, Uspehi Mat. Nauk, 30 (1975), no. 6 (186), 51–99.Google Scholar
[560] A., Tyurin, An invariant of a net of quadrics, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 23–7.Google Scholar
[561] A., Tyurin, Geometry of singularities of a general quadratic form, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 5, 1200–11Google Scholar
translation in Math. USSR, Izvestia 30 (1988), 1213–43.
[562] A., Tyurin, Special 0-cycles on a polarized surface of type K3. Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 1, 131–51, 208;Google Scholar
[563] A., Tyurin, The moduli space of vector bundles on threefolds, surfaces, and curves.I, Vector Bundles. Collected Works. Volume I, edited by Fedor, Bogomolov, Alexey, Gorodentsev, Victor Pidstrigach, Miles Reid and Nikolay Tyurin. Universitätsverlag Göttingen, Göttingen, 2008, pp. 176–213.Google Scholar
[564] J., Todd, Polytopes associated with the general cubic surface, Proc. London Math. Soc. 7 (1932), 200–5.Google Scholar
[565] J., Todd, On a quartic primal with forty-five nodes, in space of four dimensions, Quart. J. Math. 7 (1936), 169–74.Google Scholar
[566] J., Todd, Combinants of a pencil of quadric surfaces, Proc. Cambridge Phil. Soc. 43 (1947), 475–90; 44 (1948), 186–99.Google Scholar
[567] J., Todd, The complete irreducible system of two quaternary quadratics, Proc. London Math. Soc. 52 (1950), 73–90.Google Scholar
[568] J., Todd, Projective and Analytical Geometry, Pitnam Pub., New York, 1947.Google Scholar
[569] E., Togliatti, Alcuni esempi di superficie algebriche degli iperspazi che rappresentano un'equazione di Laplace, Comm. Math. Helv. 1 (1929), 255–72.Google Scholar
[570] G., Trautmann, Decomposition of Poncelet curves and instanton bundles, An. Stiint. Univ. Ovidius Constanţa Ser. Mat. 5 (1997), no. 2, 105–10.
[571] G., Trautmann, Poncelet curves and associated theta characteristics, Exposition. Math. 6 (1988), 29–64.Google Scholar
[572] H. W., Turnbull, Some geometrical interpretations of the concomitantes of two quadrics, Proc. Cambridge Phil. Soc. 19 (1919), 196–206.Google Scholar
[573] H. W., Turnbull, The Theory of Determinants, Matrices, and Invariants. 3rd edn. Dover Publ., New York, 1960.Google Scholar
[574] T., Urabe, On singularities on degenerate del Pezzo surfaces of degree 1, 2. Singularities, Part 2 (Arcata, CA, 1981), 587–91, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983.Google Scholar
[575] J., Vallés, Fibrés de Schwarzenberger et coniques de droites sauteuses, Bull. Soc. Math. France 128 (2000), 433–49.Google Scholar
[576] J., Vallés, Variétés de type Togliatti, Comptes Rendus Math. Acad. Sci. Paris 343 (2006), no. 6, 411–14.Google Scholar
[577] M., Van den Bergh, The center of the generic division algebra, J. Algebra 127 (1989), 106–26.Google Scholar
[578] R., Varley, Weddle's surfaces, Humbert's curves, and a certain 4-dimensional abelian variety, Amer. J. Math. 108 (1986), 931–52.Google Scholar
[579] A., Verra, A short proof of the unirationality of A5, Nederl. Akad. Wetensch. Indag. Math. 46 (1984), 339–55.Google Scholar
[580] A., Verra, The fiber of the Prym map in genus three, Math. Ann. 276 (1987), 433–48.Google Scholar
[581] A., Verra, On the universal principally polarized abelian variety of dimension 4. Curves and Abelian Varieties, 253–74, Contemp. Math., 465, Amer. Math. Soc., Providence, RI, 2008.Google Scholar
[582] J., Van der Vries, On Steinerians of quartic surfaces, Amer. J. Math. 32 (1910), 279–88.Google Scholar
[583] N., Vilenkin, Special Functions and the Theory of Group Representations. Translated from the Russian by V. N., Singh. Translations of Mathematical Monographs, Vol. 22 American Mathematical Society, Providence, RI, 1968.Google Scholar
[584] V., Vinnikov, Complete description of determinantal representations of smooth irreducible curves, Linear Algebra Appl. 125 (1989), 103–40.Google Scholar
[585] A., Voss, Die Liniengeometrie in ihrer Anwendung auf die Flächen zweiten Grades, Math. Ann. 10 (1876), 143–88.Google Scholar
[586] C. T. C., Wall, Nets of quadrics, and theta-characteristics of singular curves, Phil. Trans. R. Soc. London Ser.A 289 (1978), 229–69.Google Scholar
[587] H., Weber, Zur Theorie der Abelschen Funktionen vor Geschlecht 3. Berlin, 1876.Google Scholar
[588] H., Weber, Lehrbuch der Algebra, B. 2, Braunschweig, 1899 (reprinted by Chelsea Publ. Co.).Google Scholar
[589] K., Weierstrass, Zur Theorie der bilinearen und quadratischen Formen, Berliner Monatsberichte (1868), 310–38.Google Scholar
[590] A., Weiler, Ueber die verschieden Gattungen der Complexe zweiten Grades, Math. Ann. 7 (1874), 145–207.Google Scholar
[591] F. P., White, On certain nets of plane curves, Proc. Cambridge Phil. Soc. 22 (1924), 1–10.Google Scholar
[592] H. S., White, Plane Curves of the Third Order, The Harvard University Press, Cambridge, MA, 1925.Google Scholar
[593] A., Wiman, Zur Theorie endlichen Gruppen von birationalen Transformationen in der Ebene, Math. Ann. 48 (1896), 195–240.Google Scholar
[594] R., Winger, Self-projective rational sextics, Amer. J. Math. 38 (1916), 45–56.Google Scholar
[595] B., Wong, A study and classification of ruled quartic surfaces by means of a point-to-line transformation, Univ. of California Publ. of Math. 1, No 17 (1923), 371–87.Google Scholar
[596] W., Young, On flat space coordinates, Proc. London Math. Soc. 30 (1898), 54–69.Google Scholar
[597] S., Yuzvinsky, A new bound on the number of special fibers in a pencil of curves, Proc. Amer. Math. Soc. 137 (2009), 1641–8.Google Scholar
[598] F., Zak, Tangents and Secants of Algebraic Varieties, Translations of Mathematical Monographs, 127. American Mathematical Society, Providence, RI, 1993.Google Scholar
[599] O., Zariski and P. P., Samuel, Commutative Algebra. Vol. II. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, NJ–Toronto–London–New York, 1960.Google Scholar
[600] H., Zeuthen, Révision et extension des formules numériques de la théorie des surfaces réciproques, Math. Ann. 10 (1876), 446–546.Google Scholar
[601] H., Zeuthen, Lehrbuch der abzählenden Methoden der Geometrie, Leipzig, B.G. Teubner, 1914.Google Scholar
[602] K., Zindler, Algebraische Liniengeometrie, Encyklopädia der Mathematische Wissenschaften, B. III Geometrie, Part C8, pp. 973–1228, Leipzig, Teubner, 1903–15.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Igor V. Dolgachev, University of Michigan, Ann Arbor
  • Book: Classical Algebraic Geometry
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139084437.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Igor V. Dolgachev, University of Michigan, Ann Arbor
  • Book: Classical Algebraic Geometry
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139084437.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Igor V. Dolgachev, University of Michigan, Ann Arbor
  • Book: Classical Algebraic Geometry
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139084437.012
Available formats
×