Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T15:22:03.775Z Has data issue: false hasContentIssue false

28 - Minimal residual disease

from Section 3 - Evaluation and treatment

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Introduction

A multitude of clinical and biologic factors have been associated with response to treatment in childhood acute leukemia but their predictive power is far from absolute, and their usefulness for guiding clinical decisions in individual patients is inherently limited. Rather than predicting treatment response, in vivo measurements of leukemia cytoreduction provide direct information on the effectiveness of treatment in each patient. Such estimates, when performed by conventional morphologic techniques, have a relatively low sensitivity and accuracy: in most cases, leukemic cells can be detected in bone marrow with certainty only when they constitute 5% or more of the total cell population. These limitations are overcome by methods for detecting minimal (i.e., submicroscopic) residual disease (MRD), which can be 100 times more sensitive than morphology and allow a more objective assessment of treatment response. The definition of “remission” in patients with acute leukemia by these methods has become the standard at many cancer centers.

Initial reservations about the clinical utility of MRD testing arose from concerns regarding the heterogeneous distribution of leukemia during clinical remission. Another concern was that MRD signals may not correspond to viable leukemic cells with the capacity for renewal. Indeed, even contemporary MRD assays cannot determine whether the signals detected originate from stem cells or from more differentiated cells incapable of driving durable cell growth. In view of the strong correlation between MRD levels and relapse, it is now clear that the presence of MRD in most cases directly or indirectly demonstrates the persistence of leukemic cells that are resistant to chemotherapy and are capable of driving the recurrence of leukemia.

Type
Chapter
Information
Childhood Leukemias , pp. 632 - 659
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pui, CH, Pei, D, Sandlund, JT, et al. Long-term results of St. Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 2010;24:371–382.CrossRefGoogle ScholarPubMed
Moricke, A, Zimmermann, M, Reiter, A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 2010;24:265–284.CrossRefGoogle Scholar
Kaspers, GJ, Zwaan, CM. Pediatric acute myeloid leukemia: towards high-quality cure of all patients. Haematologica 2007;92:1519–1532.CrossRefGoogle ScholarPubMed
Rubnitz, JE. Childhood acute myeloid leukemia. Curr Treat Options Oncol 2008;9:95–105.CrossRefGoogle ScholarPubMed
Mathe, G, Schwarzenberg, L, Mery, AM, et al. Extensive histological and cytological survey of patients with acute leukaemia in “complete remission.” Br Med J 1966;5488:640–642.CrossRefGoogle Scholar
Martens, AC, Schultz, FW, Hagenbeek, A. Nonhomogeneous distribution of leukemia in the bone marrow during minimal residual disease. Blood 1987;70:1073–1078.Google ScholarPubMed
Bradstock, KF, Janossy, G, Tidman, N, et al. Immunological monitoring of residual disease in treated thymic acute lymphoblastic leukaemia. Leuk Res 1981;5:301–309.CrossRefGoogle ScholarPubMed
Bacher, U, Kern, W, Schoch, C, et al. Evaluation of complete disease remission in acute myeloid leukemia: a prospective study based on cytomorphology, interphase fluorescence in situ hybridization, and immunophenotyping during follow-up in patients with acute myeloid leukemia. Cancer 2006;106:839–847.CrossRefGoogle ScholarPubMed
Saiki, RK, Scharf, S, Faloona, F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985;230:1350–1354.CrossRefGoogle ScholarPubMed
van der Velden, V, Hochhaus, A, Cazzaniga, G, et al. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003;17:1013–1034.CrossRefGoogle ScholarPubMed
Beillard, E, Pallisgaard, N, van der Velden, VH, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using “real-time” quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR): a Europe Against Cancer program. Leukemia 2003;17:2474–2486.CrossRefGoogle ScholarPubMed
Szczepański, T, Harrison, CJ, van Dongen, JJ. Genetic aberrations in paediatric acute leukaemias and implications for management of patients. Lancet Oncol 2010;11:880–889.CrossRefGoogle ScholarPubMed
Gabert, J, Beillard, E, van der Velden, V, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia: a Europe Against Cancer program. Leukemia 2003;17:2318–2357.CrossRefGoogle ScholarPubMed
Campana, D. Role of minimal residual disease monitoring in adult and pediatric acute lymphoblastic leukemia. Hematol Oncol Clin North Am 2009;23:1083–1098, vii.CrossRefGoogle Scholar
Bruggemann, M, Schrauder, A, Raff, T, et al. Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18–20 September 2008. Leukemia 2010;24:521–535.CrossRefGoogle ScholarPubMed
Mullighan, CG, Collins-Underwood, JR, Phillips, LA, et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet 2009;41:1243–1246.CrossRefGoogle ScholarPubMed
Yoda, A, Yoda, Y, Chiaretti, S, et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2010;107:252–257.CrossRefGoogle ScholarPubMed
Harvey, RC, Mullighan, CG, Chen, IM, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 2010;115:5312–5321.CrossRefGoogle Scholar
Cario, G, Zimmermann, M, Romey, R, et al. Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood 2010;115:5393–5397.CrossRefGoogle ScholarPubMed
Boeckx, N, Willemse, MJ, Szczepański, T, et al. Fusion gene transcripts and Ig/TCR gene rearrangements are complementary but infrequent targets for PCR-based detection of minimal residual disease in acute myeloid leukemia. Leukemia 2002;16:368–375.CrossRefGoogle ScholarPubMed
Breit, TM, Beishuizen, A, Ludwig, WD, et al. tal-1 deletions in T-cell acute lymphoblastic leukemia as PCR target for detection of minimal residual disease. Leukemia 1993;7:2004–2011.Google ScholarPubMed
Pongers-Willemse, MJ, Seriu, T, Stolz, F, et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets. Leukemia 1999;13:110–118.CrossRefGoogle Scholar
Carlotti, E, Pettenella, F, Amaru, R, et al. Molecular characterization of a new recombination of the SIL/TAL-1 locus in a child with T-cell acute lymphoblastic leukaemia. Br J Haematol 2002;118:1011–1018.CrossRefGoogle Scholar
van Grotel, M, Meijerink, JP, van Wering, ER, et al. Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia 2008;22:124–131.CrossRefGoogle Scholar
Burmeister, T, Marschalek, R, Schneider, B, et al. Monitoring minimal residual disease by quantification of genomic chromosomal breakpoint sequences in acute leukemias with MLL aberrations. Leukemia 2006;20:451–457.CrossRefGoogle ScholarPubMed
Meyer, C, Schneider, B, Reichel, M, et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci USA 2005;102:449–454.CrossRefGoogle ScholarPubMed
van der Velden, V, Corral, L, Valsecchi, MG, et al. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia 2009;23:1073–1079.CrossRefGoogle ScholarPubMed
Jansen, MW, Corral, L, van der Velden, V, et al. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 2007;21:633–641.CrossRefGoogle ScholarPubMed
Akasaka, T, Muramatsu, M, Ohno, H, et al. Application of long-distance polymerase chain reaction to detection of junctional sequences created by chromosomal translocation in mature B-cell neoplasms. Blood 1996;88:985–994.Google ScholarPubMed
zur Stadt, U, Hoser, G, Reiter, A, Welte, K, Sykora, KW. Application of long PCR to detect t(8;14)(q24;q32) translocations in childhood Burkitt's lymphoma and B-ALL. Ann Oncol 1997;8(Suppl 1):31–35.CrossRefGoogle Scholar
Wiemels, JL, Cazzaniga, G, Daniotti, M, et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 1999;354:1499–1503.CrossRefGoogle ScholarPubMed
Reichel, M, Gillert, E, Breitenlohner, I, et al. Rapid isolation of chromosomal breakpoints from patients with t(4;11) acute lymphoblastic leukemia: implications for basic and clinical research. Leukemia 2001;15:286–288.CrossRefGoogle Scholar
Mussolin, L, Basso, K, Pillon, M, et al. Prospective analysis of minimal bone marrow infiltration in pediatric Burkitt's lymphomas by long-distance polymerase chain reaction for t(8;14)(q24;q32). Leukemia 2003;17:585–589.CrossRefGoogle Scholar
Lion, T. Current recommendations for positive controls in RT-PCR assays. Leukemia 2001;15:1033–1037.CrossRefGoogle ScholarPubMed
van der Velden, V, Cazzaniga, G, Schrauder, A, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007;21:604–611.CrossRefGoogle ScholarPubMed
Yang, L, Han, Y, Suarez, SF, Minden, MD. A tumor suppressor and oncogene: the WT1 story. Leukemia 2007;21:868–876.CrossRefGoogle ScholarPubMed
Niegemann, E, Wehner, S, Kornhuber, B, Schwabe, D, Ebener, U. WT1 gene expression in childhood leukemias. Acta Haematol 1999;102:72–76.CrossRefGoogle ScholarPubMed
Bergmann, L, Miething, C, Maurer, U, et al. High levels of Wilms' tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood 1997;90:1217–1225.Google ScholarPubMed
Willasch, AM, Gruhn, B, Coliva, T, et al. Standardization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood AML and implications of WT1 gene mutations: a European multicenter study. Leukemia 2009;23:1472–1479.CrossRefGoogle ScholarPubMed
Cilloni, D, Renneville, A, Hermitte, F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol 2009;27:5195–5201.CrossRefGoogle ScholarPubMed
Jacobsohn, DA, Tse, WT, Chaleff, S, et al. High WT1 gene expression before haematopoietic stem cell transplant in children with acute myeloid leukaemia predicts poor event-free survival. Br J Haematol 2009;146:669–674.CrossRefGoogle ScholarPubMed
Tamaki, H, Ogawa, H, Ohyashiki, K, et al. The Wilms' tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia 1999;13:393–399.CrossRefGoogle ScholarPubMed
Cilloni, D, Gottardi, E, Messa, F, et al. Significant correlation between the degree of WT1 expression and the International Prognostic Scoring System Score in patients with myelodysplastic syndromes. J Clin Oncol 2003;21:1988–1995.CrossRefGoogle ScholarPubMed
Bader, P, Niemeyer, C, Weber, G, et al. WT1 gene expression: useful marker for minimal residual disease in childhood myelodysplastic syndromes and juvenile myelo-monocytic leukemia? Eur J Haematol 2004;73:25–28.CrossRefGoogle ScholarPubMed
Maurer, U, Weidmann, E, Karakas, T, Hoelzer, D, Bergmann, L. Wilms tumor gene (wt1) mRNA is equally expressed in blast cells from acute myeloid leukemia and normal CD34+ progenitors. Blood 1997;90:4230–4232.Google ScholarPubMed
Doubek, M, Palasek, I, Pospisil, Z, et al. Detection and treatment of molecular relapse in acute myeloid leukemia with RUNX1 (AML1), CBFB, or MLL gene translocations: frequent quantitative monitoring of molecular markers in different compartments and correlation with WT1 gene expression. Exp Hematol 2009;37:659–672.CrossRefGoogle ScholarPubMed
Nakao, M, Janssen, JW, Erz, D, Seriu, T, Bartram, CR. Tandem duplication of the FLT3 gene in acute lymphoblastic leukemia: a marker for the monitoring of minimal residual disease. Leukemia 2000;14:522–524.CrossRefGoogle ScholarPubMed
Meshinchi, S, Stirewalt, DL, Alonzo, TA, et al. Structural and numerical variation of FLT3/ITD in pediatric AML. Blood 2008;111:4930–4933.CrossRefGoogle ScholarPubMed
Kondo, M, Horibe, K, Takahashi, Y, et al. Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol 1999;33:525–529.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Kottaridis, PD, Gale, RE, Frew, ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001;98:1752–1759.CrossRefGoogle ScholarPubMed
Schnittger, S, Schoch, C, Dugas, M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002;100:59–66.CrossRefGoogle ScholarPubMed
Iwai, T, Yokota, S, Nakao, M, et al. Internal tandem duplication in the juxtatransmembrane domain of the flt3 is not involved in blastic crisis of chronic myeloid leukemia. Leukemia 1997;11:1992–1993.Google Scholar
Kiyoi, H, Naoe, T, Yokota, S, et al. Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia 1997;11:1447–1452.CrossRefGoogle Scholar
Xu, F, Taki, T, Yang, HW, et al. Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br J Haematol 1999;105:155–162.CrossRefGoogle ScholarPubMed
Meshinchi, S, Woods, WG, Stirewalt, DL, et al. Prevalence and prognostic significance of FLT3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001;97:89–94.CrossRefGoogle ScholarPubMed
Arrigoni, P, Beretta, C, Silvestri, D, et al. FLT3 internal tandem duplication in childhood acute myeloid leukaemia: association with hyperleucocytosis in acute promyelocytic leukaemia. Br J Haematol 2003;120:89–92.CrossRefGoogle ScholarPubMed
Zwaan, CM, Meshinchi, S, Radich, JP, et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia (AML): prognostic significance and relation to cellular drug resistance. Blood 2003;102:2387–2394.CrossRefGoogle ScholarPubMed
Rubnitz, JE, Inaba, H, Dahl, GV, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukemia: results of the AML02 multicenter trial. Lancet Oncol 2010;11:543–552.CrossRefGoogle Scholar
Ho, PA, Zeng, R, Alonzo, TA, et al. Prevalence and prognostic implications of WT1 mutations in pediatric acute myeloid leukemia (AML): a report from the Children's Oncology Group. Blood 2010;116:702–710.CrossRefGoogle ScholarPubMed
Beretta, C, Gaipa, G, Rossi, V, et al. Development of a quantitative-PCR method for specific FLT3/ITD monitoring in acute myeloid leukemia. Leukemia 2004;18:1441–1444.CrossRefGoogle ScholarPubMed
Schnittger, S, Schoch, C, Kern, W, Hiddemann, W, Haferlach, T. FLT3 length mutations as marker for follow-up studies in acute myeloid leukaemia. Acta Haematol 2004;112:68–78.CrossRefGoogle ScholarPubMed
Kottaridis, PD, Gale, RE, Langabeer, SE, et al. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 2002;100:2393–2398.CrossRefGoogle ScholarPubMed
Shih, LY, Huang, CF, Wu, JH, et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 2002;100:2387–2392.CrossRefGoogle ScholarPubMed
Farr, C, Gill, R, Katz, F, Gibbons, B, Marshall, CJ. Analysis of ras gene mutations in childhood myeloid leukaemia. Br J Haematol 1991;77:323–327.CrossRefGoogle ScholarPubMed
Cazzaniga, G, Dell'Oro, MG, Mecucci, C, et al. Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood 2005;106:1419–1422.CrossRefGoogle ScholarPubMed
Gorello, P, Cazzaniga, G, Alberti, F, et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia 2006;20:1103–1108.CrossRefGoogle ScholarPubMed
Brown, P, McIntyre, E, Rau, R, et al. The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood 2007;110:979–985.CrossRefGoogle ScholarPubMed
Bernard, OA, Busson-LeConiat, M, Ballerini, P, et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001;15:1495–1504.CrossRefGoogle Scholar
Ballerini, P, Blaise, A, Busson-Le Coniat, M, et al. HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood 2002;100:991–997.CrossRefGoogle ScholarPubMed
Ferrando, AA, Neuberg, DS, Staunton, J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002;1:75–87.CrossRefGoogle ScholarPubMed
Steinbach, D, Schramm, A, Eggert, A, et al. Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia. Clin Cancer Res 2006;12:2434–2441.CrossRefGoogle ScholarPubMed
Greiner, J, Schmitt, M, Li, L, et al. Expression of tumor-associated antigens in acute myeloid leukemia: Implications for specific immunotherapeutic approaches. Blood 2006;108:4109–4117.CrossRefGoogle ScholarPubMed
Tajeddine, N, Millard, I, Gailly, P, Gala, JL. Real-time RT-PCR quantification of PRAME gene expression for monitoring minimal residual disease in acute myeloblastic leukaemia. Clin Chem Lab Med 2006;44:548–555.CrossRefGoogle ScholarPubMed
Qin, Y, Zhu, H, Jiang, B, et al. Expression patterns of WT1 and PRAME in acute myeloid leukemia patients and their usefulness for monitoring minimal residual disease. Leuk Res 2009;33:384–390.CrossRefGoogle ScholarPubMed
van Dongen, JJ, Wolvers-Tettero, IL. Analysis of immunoglobulin and T cell receptor genes. Part I: basic and technical aspects. Clin Chim Acta 1991;198:1–91.CrossRefGoogle Scholar
Szczepański, T, Orfao, A, van der Velden, VH, San Miguel, JF, van Dongen, JJ. Minimal residual disease in leukaemia patients. Lancet Oncology 2001;2:409–417.CrossRefGoogle ScholarPubMed
Langerak, AW, Szczepański, T, van der Burg, M, Wolvers-Tettero, IL, van Dongen, JJ. Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia 1997;11:2192–2199.CrossRefGoogle ScholarPubMed
Delabesse, E, Burtin, ML, Millien, C, et al. Rapid, multifluorescent TCRG Vgamma and Jgamma typing: application to T cell acute lymphoblastic leukemia and to the detection of minor clonal populations. Leukemia 2000;14:1143–1152.CrossRefGoogle Scholar
van Dongen, JJ, Wolvers-Tettero, IL. Analysis of immunoglobulin and T cell receptor genes. Part II: possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta 1991;198:93–174.CrossRefGoogle Scholar
Beishuizen, A, Hahlen, K, Hagemeijer, A, et al. Multiple rearranged immunoglobulin genes in childhood acute lymphoblastic leukemia of precursor B-cell origin. Leukemia 1991;5:657–667.Google ScholarPubMed
Beishuizen, A, Verhoeven, MA, Mol, EJ, et al. Detection of immunoglobulin heavy-chain gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia 1993;7:2045–2053.Google ScholarPubMed
van der Burg, M, Barendregt, BH, Szczepański, T, et al. Immunoglobulin light chain gene rearrangements display hierarchy in absence of selection for functionality in precursor-B-ALL. Leukemia 2002;16:1448–1453.CrossRefGoogle ScholarPubMed
Szczepański, T, Willemse, MJ, van Wering, ER, et al. Precursor-B-ALL with D(H)-J(H) gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia 2001;15:1415–1423.CrossRefGoogle Scholar
Siminovitch, KA, Bakhshi, A, Goldman, P, Korsmeyer, SJ. A uniform deleting element mediates the loss of kappa genes in human B cells. Nature 1985;316:260–262.CrossRefGoogle ScholarPubMed
Seriu, T, Hansen-Hagge, TE, Stark, Y, Bartram, CR. Immunoglobulin kappa gene rearrangements between the kappa deleting element and Jkappa recombination signal sequences in acute lymphoblastic leukemia and normal hematopoiesis. Leukemia 2000;14:671–674.CrossRefGoogle ScholarPubMed
Felix, CA, Wright, JJ, Poplack, DG, et al. T cell receptor alpha-, beta-, and gamma-genes in T cell and pre-B cell acute lymphoblastic leukemia. J Clin Invest 1987;80:545–556.CrossRefGoogle Scholar
Szczepański, T, Beishuizen, A, Pongers-Willemse, MJ, et al. Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease. Leukemia 1999;13:196–205.CrossRefGoogle ScholarPubMed
van der Velden, V, Bruggemann, M, Hoogeveen, PG, et al. TCRB gene rearrangements in childhood and adult precursor-B-ALL: frequency, applicability as MRD-PCR target, and stability between diagnosis and relapse. Leukemia 2004;18:1971–1980.CrossRefGoogle ScholarPubMed
Bierings, M, Szczepański, T, van Wering, ER, et al. Two consecutive immunophenotypic switches in a child with immunogenotypically stable acute leukaemia. Br J Haematol 2001;113:757–762.CrossRefGoogle Scholar
Langerak, AW, Wolvers-Tettero, IL, van den Beemd, MW, et al. Immunophenotypic and immunogenotypic characteristics of TCRgammadelta+ T cell acute lymphoblastic leukemia. Leukemia 1999;13:206–214.CrossRefGoogle ScholarPubMed
Yokota, S, Hansen-Hagge, TE, Bartram, CR. T-cell receptor delta gene recombination in common acute lymphoblastic leukemia: preferential usage of Vdelta 2 and frequent involvement of the J alpha cluster. Blood 1991;77:141–148.Google Scholar
Steenbergen, EJ, Verhagen, OJ, van Leeuwen, EF, et al. Frequent ongoing T-cell receptor rearrangements in childhood B-precursor acute lymphoblastic leukemia: implications for monitoring minimal residual disease. Blood 1995;86:692–702.Google ScholarPubMed
Szczepański, T, van der Velden, VH, Hoogeveen, PG, et al. Vdelta2–Jalpha rearrangements are frequent in precursor-B-acute lymphoblastic leukemia but rare in normal lymphoid cells. Blood 2004;103:3798–3804.CrossRefGoogle ScholarPubMed
Szczepański, T, Langerak, AW, Wolvers-Tettero, IL, et al. Immunoglobulin and T cell receptor gene rearrangement patterns in acute lymphoblastic leukemia are less mature in adults than in children: implications for selection of PCR targets for detection of minimal residual disease. Leukemia 1998;12:1081–1088.CrossRefGoogle Scholar
Brumpt, C, Delabesse, E, Beldjord, K, et al. The incidence of clonal T-cell receptor rearrangements in B-cell precursor acute lymphoblastic leukemia varies with age and genotype. Blood 2000;96:2254–2261.Google ScholarPubMed
van der Velden, V, Szczepański, T, Wijkhuijs, AJ, et al. Age-related patterns of immunoglobulin and T cell receptor gene rearrangements in precursor-B-ALL: implications for detection of minimal residual disease. Leukemia 2003;17:1834–1844.CrossRefGoogle Scholar
Peham, M, Panzer, S, Fasching, K, et al. Low frequency of clonotypic Ig and T-cell receptor gene rearrangements in t(4;11) infant acute lymphoblastic leukaemia and its implication for the detection of minimal residual disease. Br J Haematol 2002;117:315–321.CrossRefGoogle Scholar
Mann, G, Cazzaniga, G, van der Velden, VH, et al. Acute lymphoblastic leukemia with t(4;11) in children 1 year and older: the ‘big sister' of the infant disease?Leukemia 2007;21:642–646.CrossRefGoogle Scholar
Campana, D, van Dongen, JJ, Mehta, A, et al. Stages of T-cell receptor protein expression in T-cell acute lymphoblastic leukemia. Blood 1991;77:1546–1554.Google ScholarPubMed
Coustan-Smith, E, Mullighan, CG, Onciu, M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 2009;10:147–156.CrossRefGoogle ScholarPubMed
Breit, TM, Wolvers-Tettero, IL, Beishuizen, A, et al. Southern blot patterns, frequencies, and junctional diversity of T-cell receptor-delta gene rearrangements in acute lymphoblastic leukemia. Blood 1993;82:3063–3074.Google ScholarPubMed
Langerak, AW, Wolvers-Tettero, IL, van Dongen, JJ. Detection of T cell receptor beta (TCRB) gene rearrangement patterns in T cell malignancies by Southern blot analysis. Leukemia 1999;13:965–974.CrossRefGoogle Scholar
Szczepański, T, Langerak, AW, Willemse, MJ, et al. T cell receptor gamma (TCRG) gene rearrangements in T cell acute lymphoblastic leukemia reflect “end-stage” recombinations: implications for minimal residual disease monitoring. Leukemia 2000;14:1208–1214.CrossRefGoogle Scholar
Bruggemann, M, van der Velden, V, Raff, T, et al. Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease in childhood and adult T-cell acute lymphoblastic leukemia. Leukemia 2004;18:709–719.CrossRefGoogle ScholarPubMed
van Dongen, JJ, Langerak, AW, Bruggemann, M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene combinations in suspect lymphoproliferations. Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003;17:2257–2317.CrossRefGoogle Scholar
Szczepański, T, Pongers-Willemse, MJ, Langerak, AW, et al. Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor alpha beta lineage. Blood 1999;93:4079–4085.Google ScholarPubMed
Adriaansen, HJ, Soeting, PW, Wolvers-Tettero, IL, van Dongen, JJ. Immunoglobulin and T-cell receptor gene rearrangements in acute non-lymphocytic leukemias. Analysis of 54 cases and a review of the literature. Leukemia 1991;5:744–751.Google Scholar
Schmidt, CA, Oettle, H, Neubauer, A, et al. Rearrangements of T-cell receptor delta, gamma and beta genes in acute myeloid leukemia coexpressing T-lymphoid features. Leukemia 1992;6:1263–1267.Google ScholarPubMed
Sanchez, I, San Miguel, JF, Corral, J, et al. Gene rearrangement in acute non-lymphoblastic leukaemia: correlation with morphological and immunophenotypic characteristics of blast cells. Br J Haematol 1995;89:104–109.CrossRefGoogle ScholarPubMed
Kitchingman, GR. Immunoglobulin heavy chain gene VH–D junctional diversity at diagnosis in patients with acute lymphoblastic leukemia. Blood 1993;81:775–782.Google ScholarPubMed
Steenbergen, EJ, Verhagen, OJ, van Leeuwen, EF, dem Borne, AE, van der Schoot, CE. Distinct ongoing Ig heavy chain rearrangement processes in childhood B-precursor acute lymphoblastic leukemia. Blood 1993;82:581–589.Google ScholarPubMed
Szczepański, T, Willemse, MJ, Kamps, WA, et al. Molecular discrimination between relapsed and secondary acute lymphoblastic leukemia: proposal for an easy strategy. Med Pediatr Oncol 2001;36:352–358.CrossRefGoogle ScholarPubMed
Szczepański, T, Willemse, MJ, Brinkhof, B, et al. Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 2002;99:2315–2323.CrossRefGoogle Scholar
Beishuizen, A, Verhoeven, MA, van Wering, ER, et al. Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood 1994;83:2238–2247.Google ScholarPubMed
Steward, CG, Goulden, NJ, Katz, F, et al. A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood 1994;83:1355–1362.Google ScholarPubMed
Taylor, JJ, Rowe, D, Kylefjord, H, et al. Characterisation of non-concordance in the T-cell receptor gamma chain genes at presentation and clinical relapse in acute lymphoblastic leukemia. Leukemia 1994;8:60–66.Google ScholarPubMed
van der Velden, V, Willemse, MJ, van der Schoot, CE, et al. Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 2002;16:928–936.CrossRefGoogle ScholarPubMed
van Dongen, JJ, Seriu, T, Panzer-Grumayer, ER, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998;352:1731–1738.CrossRefGoogle ScholarPubMed
Szczepański, T, van der Velden, VH, Raff, T. Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of secondary T-ALL. Leukemia 2003;17:2149–2156.CrossRefGoogle Scholar
Flohr, T, Schrauder, A, Cazzaniga, G, et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 2008;22:771–782.CrossRefGoogle Scholar
Knechtli, CJC, Goulden, NJ, Hancock, JP, et al. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood 1998;92:4072–4079.Google ScholarPubMed
Verhagen, OJ, Willemse, MJ, Breunis, WB, et al. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2000;14:1426–1435.CrossRefGoogle ScholarPubMed
van der Velden, VH, Wijkhuijs, JM, Jacobs, DC, van Wering, ER, van Dongen, JJ. T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 2002;16:1372–1380.CrossRefGoogle ScholarPubMed
Langerak, AW, Wolvers-Tettero, IL, Gastel-Mol, EJ, Oud, ME, van Dongen, JJ. Basic helix-loop-helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood 2001;98:2456–2465.CrossRefGoogle ScholarPubMed
van Wering, ER, van der Linden-Schrever, BE, van der Velden, V, Szczepański, T, van Dongen, JJ. T-lymphocytes in bone marrow samples of children with acute lymphoblastic leukemia during and after chemotherapy might hamper PCR-based minimal residual disease studies. Leukemia 2001;15:1301–1303.CrossRefGoogle ScholarPubMed
Cazzaniga, G, Biondi, A. Molecular monitoring of childhood acute lymphoblastic leukemia using antigen receptor gene rearrangements and quantitative polymerase chain reaction technology. Haematologica 2005;90:382–390.Google ScholarPubMed
van Dongen, JJ, Breit, TM, Adriaansen, HJ, Beishuizen, A, Hooijkaas, H. Detection of minimal residual disease in acute leukemia by immunological marker analysis and polymerase chain reaction. Leukemia 1992;6(Suppl 1): 47–59.Google ScholarPubMed
Campana, D, Coustan-Smith, E, Janossy, G. The immunologic detection of minimal residual disease in acute leukemia. Blood 1990;76:163–171.Google ScholarPubMed
Coustan-Smith, E, Behm, FG, Sanchez, J, et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 1998;351:550–554.CrossRefGoogle ScholarPubMed
Farahat, N, Morilla, A, Owusu-Ankomah, K, et al. Detection of minimal residual disease in B-lineage acute lymphoblastic leukaemia by quantitative flow cytometry. Br J Haematol 1998;101:158–164.CrossRefGoogle ScholarPubMed
Coustan-Smith, E, Sancho, J, Hancock, ML, et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000;96:2691–2696.Google ScholarPubMed
San Miguel, JF, Vidriales, MB, Lopez-Berges, C, et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood 2001;98:1746–1751.CrossRefGoogle ScholarPubMed
Dworzak, MN, Froschl, G, Printz, D, et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood 2002;99:1952–1958.CrossRefGoogle ScholarPubMed
Coustan-Smith, E, Sancho, J, Behm, FG, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood 2002;100:52–58.CrossRefGoogle ScholarPubMed
Coustan-Smith, E, Sancho, J, Hancock, ML, et al. Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood 2002;100:2399–2402.CrossRefGoogle ScholarPubMed
Borowitz, MJ, Devidas, M, Hunger, SP, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors a Children's Oncology Group study. Blood 2008;111:5477–5485.CrossRefGoogle ScholarPubMed
Pui, CH, Campana, D, Pei, D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009;360:2730–2741.CrossRefGoogle ScholarPubMed
Sutton, R, Venn, NC, Tolisano, J, et al. Clinical significance of minimal residual disease at day 15 and at the end of therapy in childhood acute lymphoblastic leukaemia. Br J Haematol 2009;146:292–299.CrossRefGoogle ScholarPubMed
Basso, G, Veltroni, M, Valsecchi, MG, et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol 2009;27:5168–5174.CrossRefGoogle ScholarPubMed
Wells, DA, Sale, GE, Shulman, HM, et al. Multidimensional flow cytometry of marrow can differentiate leukemic from normal lymphoblasts and myeloblasts after chemotherapy and bone marrow transplantation. Am J Clin Pathol 1998;110:84–94.CrossRefGoogle ScholarPubMed
Sievers, EL, Lange, BJ, Alonzo, TA, et al. Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children's Cancer Group study of 252 acute myeloid leukemia patients. Blood 2003;101:3398–3406.CrossRefGoogle Scholar
Sang, BC, Shi, L, Dias, P, et al. Monoclonal antibodies specific to the acute lymphoblastic leukemia t(1;19)-associated E2A/pbx1 chimeric protein: characterization and diagnostic utility. Blood 1997;89:2909–2914.Google Scholar
Paolucci, P, Hayward, AR, Rapson, NT. Pre-B and B cells in children on leukaemia remission maintenance treatment. Clin Exp Immunol 1979;37:259–266.Google Scholar
Longacre, TA, Foucar, K, Crago, S, et al. Hematogones: a multiparameter analysis of bone marrow precursor cells. Blood 1989;73:543–552.Google ScholarPubMed
Caldwell, CW, Poje, E, Helikson, MA. B-cell precursors in normal pediatric bone marrow. Am J Clin Pathol 1991;95:816–823.CrossRefGoogle ScholarPubMed
Lucio, P, Parreira, A, van den Beemd, MW, et al. Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia 1999;13:419–427.CrossRefGoogle ScholarPubMed
Ciudad, J, San Miguel, JF, Lopez-Berges, MC, et al. Detection of abnormalities in B-cell differentiation pattern is a useful tool to predict relapse in precursor-B-ALL. Br J Haematol 1999;104:695–705.CrossRefGoogle ScholarPubMed
van Lochem, EG, Wiegers, YM, van den Beemd, R, et al. Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patients depends on the type of preceding chemotherapy. Leukemia 2000;14:688–695.CrossRefGoogle ScholarPubMed
McKenna, RW, Washington, LT, Aquino, DB, Picker, LJ, Kroft, SH. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood 2001;98:2498–2507.CrossRefGoogle ScholarPubMed
Porwit-MacDonald, A, Bjorklund, E, Lucio, P, et al. BIOMED-1 concerted action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL). Leukemia 2000;14:816–825.CrossRefGoogle Scholar
Ciudad, J, San Miguel, JF, Lopez-Berges, MC, et al. Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol 1998;16:3774–3781.CrossRefGoogle ScholarPubMed
Lucio, P, Gaipa, G, van Lochem, EG, et al. BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-1 Concerted Action Investigation of Minimal Residual Disease in Acute Leukemia: International Standardization and Clinical Evaluation. Leukemia 2001;15:1185–1192.CrossRefGoogle ScholarPubMed
Weir, EG, Cowan, K, LeBeau, P, Borowitz, MJ. A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: implications for residual disease detection. Leukemia 1999;13:558–567.CrossRefGoogle ScholarPubMed
Dworzak, MN, Fritsch, G, Fleischer, C, et al. Comparative phenotype mapping of normal vs malignant pediatric B-lymphopoiesis unveils leukemia-associated aberrations. Exp Hematol 1998;26:305–313.Google ScholarPubMed
Muzzafar, T, Medeiros, LJ, Wang, SA, et al. Aberrant underexpression of CD81 in precursor B-cell acute lymphoblastic leukemia: utility in detection of minimal residual disease by flow cytometry. Am J Clin Pathol 2009;132:692–698.CrossRefGoogle ScholarPubMed
Dworzak, MN, Gaipa, G, Ratei, R, et al. Standardization of flow cytometric minimal residual disease evaluation in acute lymphoblastic leukemia: Multicentric assessment is feasible. Cytometry B Clin Cytom 2008;74:331–340.CrossRefGoogle ScholarPubMed
Rhein, P, Mitlohner, R, Basso, G, et al. CD11b is a therapy resistance- and minimal residual disease-specific marker in precursor B-cell acute lymphoblastic leukemia. Blood 2010;115:3763–3771.CrossRefGoogle ScholarPubMed
Campana, D, Thompson, JS, Amlot, P, Brown, S, Janossy, G. The cytoplasmic expression of CD3 antigens in normal and malignant cells of the T lymphoid lineage. J Immunol 1987;138:648–655.Google ScholarPubMed
Dworzak, MN, Froschl, G, Printz, D, et al. CD99 expression in T-lineage ALL: implications for flow cytometric detection of minimal residual disease. Leukemia 2004;18:703–708.CrossRefGoogle ScholarPubMed
Coustan-Smith, E, Ribeiro, RC, Stow, P, et al. A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood 2006;108:97–102.CrossRefGoogle ScholarPubMed
Hurwitz, CA, Loken, MR, Graham, ML, et al. Asynchronous antigen expression in B lineage acute lymphoblastic leukemia. Blood 1988;72:299–307.Google ScholarPubMed
Wells, DA, Hall, MC, Shulman, HM, Loken, MR. Occult B cell malignancies can be detected by three-color flow cytometry in patients with cytopenias. Leukemia 1998;12:2015–2023.CrossRefGoogle ScholarPubMed
Chen, JS, Coustan-Smith, E, Suzuki, T, et al. Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood 2001;97:2115–2120.CrossRefGoogle ScholarPubMed
Veltroni, M, De Zen, L, Sanzari, MC, et al. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. Haematologica 2003;88:1245–1252.Google ScholarPubMed
Gaipa, G, Basso, G, Maglia, O, et al. Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection. Leukemia 2005;19:49–56.CrossRefGoogle ScholarPubMed
Coustan-Smith, E, Song, G, Clark, C, et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2011;117:6267–6276.CrossRefGoogle ScholarPubMed
Terstappen, LW, Loken, MR. Myeloid cell differentiation in normal bone marrow and acute myeloid leukemia assessed by multi-dimensional flow cytometry. Anal Cell Pathol 1990;2:229–240.Google ScholarPubMed
Campana, D, Coustan-Smith, E. Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry 1999;38:139–152.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Venditti, A, Buccisano, F, Del Poeta, G, et al. Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia [In Process Citation]. Blood 2000;96:3948–3952.Google Scholar
Gross, HJ, Verwer, B, Houck, D, Recktenwald, D. Detection of rare cells at a frequency of one per million by flow cytometry. Cytometry 1993;14:519–526.CrossRefGoogle Scholar
Stow, P, Key, L, Chen, X, et al. Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood 2010;115:4657–4663.CrossRefGoogle ScholarPubMed
Neale, GA, Coustan-Smith, E, Pan, Q, et al. Tandem application of flow cytometry and polymerase chain reaction for comprehensive detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 1999;13:1221–1226.CrossRefGoogle ScholarPubMed
Inaba, H, Rubnitz, JE, Coustan-Smith, E, et al. Phase I pharmacokinetic and pharmacodynamic study of the multikinase inhibitor sorafenib in combination with clofarabine and cytarabine in pediatric relapsed/refractory leukemia. J Clin Oncol 2011;29:3293–3293.CrossRefGoogle ScholarPubMed
Pui, CH, Raimondi, SC, Behm, FG, et al. Shifts in blast cell phenotype and karyotype at relapse of childhood lymphoblastic leukemia. Blood 1986;68:1306–1310.Google ScholarPubMed
Abshire, TC, Buchanan, GR, Jackson, JF, et al. Morphologic, immunologic and cytogenetic studies in children with acute lymphoblastic leukemia at diagnosis and relapse: a Pediatric Oncology Group study. Leukemia 1992;6:357–362.Google ScholarPubMed
Macedo, A, San Miguel, JF, Vidriales, MB, et al. Phenotypic changes in acute myeloid leukaemia: implications in the detection of minimal residual disease. J Clin Pathol 1996;49:15–18.CrossRefGoogle ScholarPubMed
van Wering, ER, Beishuizen, A, Roeffen, ET, et al. Immunophenotypic changes between diagnosis and relapse in childhood acute lymphoblastic leukemia. Leukemia 1995;9:1523–1533.Google ScholarPubMed
Chucrallah, AE, Stass, SA, Huh, YO, Albitar, M, Kantarjian, HM. Adult acute lymphoblastic leukemia at relapse. Cytogenetic, immunophenotypic, and molecular changes. Cancer 1995;76:985–991.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Guglielmi, C, Cordone, I, Boecklin, F, et al. Immunophenotype of adult and childhood acute lymphoblastic leukemia: changes at first relapse and clinico-prognostic implications. Leukemia 1997;11:1501–1507.CrossRefGoogle ScholarPubMed
Oelschlagel, U, Nowak, R, Schaub, A, et al. Shift of aberrant antigen expression at relapse or at treatment failure in acute leukemia. Cytometry 2000;42:247–253.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Baer, MR, Stewart, CC, Dodge, RK, et al. High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood 2001;97:3574–3580.CrossRefGoogle Scholar
Tomova, A, Babusikova, O. Shifts in expression of immunological cell markers in relapsed acute leukemia. Neoplasma 2001;48:164–168.Google ScholarPubMed
Dworzak, MN, Schumich, A, Printz, D, et al. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy. Blood 2008;112:3982–3988.CrossRefGoogle ScholarPubMed
Dworzak, MN, Gaipa, G, Schumich, A, et al. Modulation of antigen expression in B-cell precursor acute lymphoblastic leukemia during induction therapy is partly transient: evidence for a drug-induced regulatory phenomenon. Results of the AIEOP-BFM-ALL-FLOW-MRD-Study Group. Cytometry B Clin Cytom 2010;78:147–153.Google ScholarPubMed
Coustan-Smith, E, Ribeiro, RC, Rubnitz, JE, et al. Clinical significance of residual disease during treatment in childhood acute myeloid leukemia. Br J Haematol 2003;123:243–252.CrossRefGoogle Scholar
Cazzaniga, G, Rossi, V, Biondi, A. Monitoring minimal residual disease using chromosomal translocations in childhood ALL. Best Pract Res Clin Haematol 2002;15:21–35.CrossRefGoogle ScholarPubMed
Radich, JP. Philadelphia chromosome-positive acute lymphocytic leukemia. Hematol Oncol Clin North Am 2001;15:21–36.CrossRefGoogle ScholarPubMed
Arico, M, Valsecchi, MG, Camitta, B, et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 2000;342:998–1006.CrossRefGoogle ScholarPubMed
Kebriaei, P, Larson, RA. Progress and challenges in the therapy of adult acute lymphoblastic leukemia. Curr Opin Hematol 2003;10:284–289.CrossRefGoogle ScholarPubMed
Gokbuget, N, Kneba, M, Raff, T, et al. Risk-adapted treatment according to minimal residual disease in adult ALL. Best Pract Res Clin Haematol 2002;15:639–652.CrossRefGoogle ScholarPubMed
Cazzaniga, G, Lanciotti, M, Rossi, V, et al. Prospective molecular monitoring of BCR/ABL transcript in children with Ph+ acute lymphoblastic leukaemia unravels differences in treatment response. Br J Haematol 2002;119:445–453.CrossRefGoogle Scholar
Scheuring, UJ, Pfeifer, H, Wassmann, B, et al. Early minimal residual disease (MRD) analysis during treatment of Philadelphia chromosome/Bcr-Abl-positive acute lymphoblastic leukemia with the Abl-tyrosine kinase inhibitor imatinib (STI571). Blood 2003;101:85–90.CrossRefGoogle Scholar
Wassmann, B, Pfeifer, H, Stadler, M, et al. Early molecular response to posttransplantation imatinib determines outcome in MRD+ Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood 2005;106:458–463.CrossRefGoogle Scholar
Pane, F, Cimino, G, Izzo, B, et al. Significant reduction of the hybrid BCR/ABL transcripts after induction and consolidation therapy is a powerful predictor of treatment response in adult Philadelphia-positive acute lymphoblastic leukemia. Leukemia 2005;19:628–635.CrossRefGoogle ScholarPubMed
Yanada, M, Sugiura, I, Takeuchi, J, et al. Prospective monitoring of BCR-ABL1 transcript levels in patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia undergoing imatinib-combined chemotherapy. Br J Haematol 2008;143:503–510.Google ScholarPubMed
Biondi, A, Rambaldi, A, Rossi, V, et al. Detection of ALL-1/AF4 fusion transcript by reverse transcription-polymerase chain reaction for diagnosis and monitoring of acute leukemias with the t(4;11) translocation. Blood 1993;82:2943–2947.Google Scholar
Cimino, G, Elia, L, Rivolta, A, et al. Clinical relevance of residual disease monitoring by polymerase chain reaction in patients with ALL-1/AF-4 positive-acute lymphoblastic leukaemia. Br J Haematol 1996;92:659–664.CrossRefGoogle ScholarPubMed
Ida, K, Taki, T, Bessho, F, et al. Detection of chimeric mRNAs by reverse transcriptase-polymerase chain reaction for diagnosis and monitoring of acute leukemias with 11q23 abnormalities. Med Pediatr Oncol 1997;28:325–332.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Cimino, G, Elia, L, Rapanotti, MC, et al. A prospective study of residual-disease monitoring of the ALL1/AF4 transcript in patients with t(4;11) acute lymphoblastic leukemia. Blood 2000;95:96–101.Google Scholar
Cayuela, JM, Baruchel, A, Orange, C, et al. TEL-AML1 fusion RNA as a new target to detect minimal residual disease in pediatric B-cell precursor acute lymphoblastic leukemia. Blood 1996;88:302–308.Google ScholarPubMed
Nakao, M, Yokota, S, Horiike, S, et al. Detection and quantification of TEL/AML1 fusion transcripts by polymerase chain reaction in childhood acute lymphoblastic leukemia. Leukemia 1996;10:1463–1470.Google ScholarPubMed
Satake, N, Kobayashi, H, Tsunematsu, Y, et al. Minimal residual disease with TEL-AML1 fusion transcript in childhood acute lymphoblastic leukaemia with t(12;21). Br J Haematol 1997;97:607–611.CrossRefGoogle Scholar
Madzo, J, Zuna, J, Muzikova, K, et al. Slower molecular response to treatment predicts poor outcome in patients with TEL/AML1 positive acute lymphoblastic leukemia: prospective real-time quantitative reverse transcriptase-polymerase chain reaction study. Cancer 2003;97:105–113.CrossRefGoogle ScholarPubMed
Seyfarth, J, Madsen, HO, Nyvold, C, et al. Post-induction residual disease in translocation t(12;21)-positive childhood ALL. Med Pediatr Oncol 2003;40:82–87.CrossRefGoogle Scholar
Metzler, M, Mann, G, Monschein, U, et al. Minimal residual disease analysis in children with t(12;21)-positive acute lymphoblastic leukemia: comparison of Ig/TCR rearrangements and the genomic fusion gene. Haematologica 2006;91:683–686.Google Scholar
Riehm, H, Reiter, A, Schrappe, M, et al. Corticosteroid-dependent reduction of leukocyte count in blood as a prognostic factor in acute lymphoblastic leukemia in childhood (therapy study ALL-BFM 83). Klin Padiatr 1987;199:151–160.CrossRefGoogle Scholar
Cave, H, van der Werff, tenBosch, J, Suciu, S, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer–Childhood Leukemia Cooperative Group. N Engl J Med 1998;339:591–598.CrossRefGoogle ScholarPubMed
Jacquy, C, Delepaut, B, Van Daele, S, et al. A prospective study of minimal residual disease in childhood B-lineage acute lymphoblastic leukaemia: MRD level at the end of induction is a strong predictive factor of relapse. Br J Haematol 1997;98:140–146.CrossRefGoogle Scholar
Brisco, MJ, Condon, J, Hughes, E, et al. Outcome prediction in childhood acute lymphoblastic leukaemia by molecular quantification of residual disease at the end of induction. Lancet 1994;343:196–200.CrossRefGoogle ScholarPubMed
Wasserman, R, Galili, N, Ito, Y, et al. Residual disease at the end of induction therapy as a predictor of relapse during therapy in childhood B-lineage acute lymphoblastic leukemia. J Clin Oncol 1992;10:1879–1888.CrossRefGoogle ScholarPubMed
Gruhn, B, Hongeng, S, Yi, H, et al. Minimal residual disease after intensive induction therapy in childhood acute lymphoblastic leukemia predicts outcome. Leukemia 1998;12:675–681.CrossRefGoogle ScholarPubMed
Goulden, NJ, Knechtli, CJ, Garland, RJ, et al. Minimal residual disease analysis for the prediction of relapse in children with standard-risk acute lymphoblastic leukaemia. Br J Haematol 1998;100:235–244.CrossRefGoogle ScholarPubMed
Zhou, J, Goldwasser, MA, Li, A, et al. Quantitative analysis of minimal residual disease predicts relapse in children with B-lineage acute lymphoblastic leukemia in DFCI ALL Consortium Protocol 95-01. Blood 2007;110:1607–1611.CrossRefGoogle ScholarPubMed
Conter, V, Bartram, CR, Valsecchi, MG, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 2010;115:3206–3214.CrossRefGoogle ScholarPubMed
Nyvold, C, Madsen, HO, Ryder, LP, et al. Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood 2002;99:1253–1258.CrossRefGoogle ScholarPubMed
Schrappe, M, Valsecchi, MG, Bartram, CR, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 200 study. Blood 2011;118:2077–2084.CrossRefGoogle Scholar
Scrideli, CA, Assumpcao, JG, Ganazza, MA, et al. A simplified minimal residual disease polymerase chain reaction method at early treatment points can stratify children with acute lymphoblastic leukemia into good and poor outcome groups. Haematologica 2009;94:781–789.CrossRefGoogle ScholarPubMed
Attarbaschi, A, Mann, G, Panzer-Grumayer, R, et al. Minimal residual disease values discriminate between low and high relapse risk in children with B-cell precursor acute lymphoblastic leukemia and an intrachromosomal amplification of chromosome 21: the Austrian and German acute lymphoblastic leukemia Berlin–Frankfurt–Münster (ALL-BFM) trials. J Clin Oncol 2008;26:3046–3050.CrossRefGoogle ScholarPubMed
Panzer-Grumayer, ER, Schneider, M, Panzer, S, Fasching, K, Gadner, H. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 2000;95:790–794.Google ScholarPubMed
Dibenedetto, SP, LoNigro, L, Mayer, SP, Rovera, G, Schiliro, G. Detectable molecular residual disease at the beginning of maintenance therapy indicates poor outcome in children with T-cell acute lymphoblastic leukemia. Blood 1997;90:1226–1232.Google ScholarPubMed
Nizet, Y, Van Daele, S, Lewalle, P, et al. Long-term follow-up of residual disease in acute lymphoblastic leukemia patients in complete remission using clonogeneic IgH probes and the polymerase chain reaction. Blood 1993;82:1618–1625.Google ScholarPubMed
Neale, GA, Menarguez, J, Kitchingman, GR, et al. Detection of minimal residual disease in T-cell acute lymphoblastic leukemia using polymerase chain reaction predicts impending relapse. Blood 1991;78:739–747.Google ScholarPubMed
Yokota, S, Hansen-Hagge, TE, Ludwig, WD, et al. Use of polymerase chain reactions to monitor minimal residual disease in acute lymphoblastic leukemia patients. Blood 1991;77:331–339.Google ScholarPubMed
Biondi, A, Yokota, S, Hansen-Hagge, TE, et al. Minimal residual disease in childhood acute lymphoblastic leukemia: analysis of patients in continuous complete remission or with consecutive relapse. Leukemia 1992;6:282–288.Google ScholarPubMed
Steenbergen, EJ, Verhagen, OJ, van Leeuwen, EF, et al. Prolonged persistence of PCR-detectable minimal residual disease after diagnosis or first relapse predicts poor outcome in childhood B-precursor acute lymphoblastic leukemia. Leukemia 1995;9:1726–1734.Google ScholarPubMed
Eckert, C, Biondi, A, Seeger, K, et al. Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet 2001;358:1239–1241.CrossRefGoogle ScholarPubMed
Paganin, M, Zecca, M, Fabbri, G, et al. Minimal residual disease is an important predictive factor of outcome in children with relapsed “high-risk” acute lymphoblastic leukemia. Leukemia 2008;22:2193–2200.CrossRefGoogle ScholarPubMed
van der Velden, V, Joosten, SA, Willemse, MJ, et al. Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia 2001;15:1485–1487.CrossRefGoogle ScholarPubMed
Bader, P, Hancock, J, Kreyenberg, H, et al. Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia 2002;16:1668–1672.CrossRefGoogle Scholar
Uzunel, M, Mattsson, J, Jaksch, M, Remberger, M, Ringden, O. The significance of graft-versus-host disease and pretransplantation minimal residual disease status to outcome after allogeneic stem cell transplantation in patients with acute lymphoblastic leukemia. Blood 2001;98:1982–1984.CrossRefGoogle ScholarPubMed
Bader, P, Kreyenberg, H, Henze, GH, et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol 2009;27:377–384.CrossRefGoogle ScholarPubMed
Knechtli, CJ, Goulden, NJ, Hancock, JP, et al. Minimal residual disease status as a predictor of relapse after allogeneic bone marrow transplantation for children with acute lymphoblastic leukaemia. Br J Haematol 1998;102:860–871.CrossRefGoogle ScholarPubMed
Ishikawa, K, Seriu, T, Watanabe, A, et al. Detection of neoplastic clone in the hypoplastic and recovery phases preceding acute lymphoblastic leukemia by in vitro amplification of rearranged T-cell receptor delta chain gene. J Pediatr Hematol Oncol 1995;17:270–275.CrossRefGoogle ScholarPubMed
Morley, AA, Brisco, MJ, Rice, M, et al. Leukaemia presenting as marrow hypoplasia: molecular detection of the leukaemic clone at the time of initial presentation. Br J Haematol 1997;98:940–944.CrossRefGoogle ScholarPubMed
Goulden, N, Langlands, K, Steward, C, et al. PCR assessment of bone marrow status in ‘isolated' extramedullary relapse of childhood B-precursor acute lymphoblastic leukaemia. Br J Haematol 1994;87:282–285.CrossRefGoogle ScholarPubMed
Neale, GA, Pui, CH, Mahmoud, HH, et al. Molecular evidence for minimal residual bone marrow disease in children with “isolated” extra-medullary relapse of T-cell acute lymphoblastic leukemia. Leukemia 1994;8:768–775.Google ScholarPubMed
O'Reilly, J, Meyer, B, Baker, D, et al. Correlation of bone marrow minimal residual disease and apparent isolated extramedullary relapse in childhood acute lymphoblastic leukaemia. Leukemia 1995;9:624–627.Google ScholarPubMed
Hagedorn, N, Acquaviva, C, Fronkova, E, et al. Submicroscopic bone marrow involvement in isolated extramedullary relapses in childhood acute lymphoblastic leukemia: a more precise definition of “isolated” and its possible clinical implications, a collaborative study of the Resistant Disease Committee of the International BFM study group. Blood 2007;110:4022–4029.CrossRefGoogle ScholarPubMed
Cave, H, Guidal, C, Rohrlich, P, et al. Prospective monitoring and quantitation of residual blasts in childhood acute lymphoblastic leukemia by polymerase chain reaction study of delta and gamma T-cell receptor genes. Blood 1994;83:1892–1902.Google ScholarPubMed
Lal, A, Kwan, E, al Mahr, M, et al. Molecular detection of acute lymphoblastic leukaemia in boys with testicular relapse. Mol Pathol 1998;51:277–281.CrossRefGoogle ScholarPubMed
Vervoordeldonk, SF, Merle, PA, Behrendt, H, et al. PCR-positivity in harvested bone marrow predicts relapse after transplantation with autologous purged bone marrow in children in second remission of precursor B-cell acute leukaemia. Br J Haematol 1997;96:395–402.CrossRefGoogle ScholarPubMed
Balduzzi, A, Gaipa, G, Bonanomi, S, et al. Purified autologous grafting in childhood acute lymphoblastic leukemia in second remission: evidence for long-term clinical and molecular remissions. Leukemia 2001;15:50–56.CrossRefGoogle ScholarPubMed
van der Velden, V, Willemse, MJ, Mulder, MF, et al. Clearance of maternal leukaemic cells in a neonate. Br J Haematol 2001;114:104–106.CrossRefGoogle Scholar
Greaves, M. In utero origins of childhood leukaemia. Early Hum Dev 2005;81:123–129.CrossRefGoogle ScholarPubMed
Wiemels, JL, Ford, AM, van Wering, ER, Postma, A, Greaves, M. Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood 1999;94:1057–1062.Google ScholarPubMed
Greaves, M. Molecular genetics, natural history and the demise of childhood leukaemia. Eur J Cancer 1999;35:1941–1953.CrossRefGoogle ScholarPubMed
Wiemels, J, Kang, M, Greaves, M. Backtracking of leukemic clones to birth. Methods Mol Biol 2009;538:7–27.CrossRefGoogle Scholar
Campana, D. Determination of minimal residual disease in leukemia patients. Br J Haematol 2003;121:823–838.CrossRefGoogle Scholar
Neale, GA, Coustan-Smith, E, Stow, P, et al. Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 2004;18:934–938.CrossRefGoogle ScholarPubMed
Kerst, G, Kreyenberg, H, Roth, C, et al. Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR. Br J Haematol 2005;128:774–782.CrossRefGoogle ScholarPubMed
Irving, J, Jesson, J, Virgo, P, et al. Establishment and validation of a standard protocol for the detection of minimal residual disease in B lineage childhood acute lymphoblastic leukemia by flow cytometry in a multi-center setting. Haematologica 2009;94:870–874.CrossRefGoogle Scholar
van der Velden, V, Jacobs, DC, Wijkhuijs, AJ, et al. Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia 2002;16:1432–1436.CrossRefGoogle Scholar
Coustan-Smith, E, Gajjar, A, Hijiha, N, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia 2004;18:499–504.CrossRefGoogle ScholarPubMed
Raetz, EA, Borowitz, MJ, Devidas, M, et al. Reinduction platform for children with first marrow relapse of acute lymphoblastic leukemia: a Children's Oncology Group Study [corrected]. J Clin Oncol 2008;26:3971–3978.CrossRefGoogle Scholar
Mistry, AR, Pedersen, EW, Solomon, E, Grimwade, D. The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev 2003;17:71–97.CrossRefGoogle ScholarPubMed
Lo-Coco, F, Ammatuna, E. Front line clinical trials and minimal residual disease monitoring in acute promyelocytic leukemia. Curr Top Microbiol Immunol 2007;313:145–156.Google ScholarPubMed
Wang, ZY, Chen, Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 2008;111:2505–2515.CrossRefGoogle ScholarPubMed
Sanz, MA, Grimwade, D, Tallman, MS, et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 2009;113:1875–1891.CrossRefGoogle Scholar
Diverio, D, Rossi, V, Avvisati, G, et al. Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARalpha fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMA-AIEOP multicenter “AIDA” trial. GIMEMA-AIEOP Multicenter “AIDA” Trial. Blood 1998;92:784–789.Google ScholarPubMed
Lo-Coco, F, Diverio, D, Avvisati, G, et al. Therapy of molecular relapse in acute promyelocytic leukemia. Blood 1999;94:2225–2229.Google ScholarPubMed
Burnett, AK, Grimwade, D, Solomon, E, Wheatley, K, Goldstone, AH. Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the randomized MRC trial. Blood 1999;93:4131–4143.Google ScholarPubMed
Schnittger, S, Weisser, M, Schoch, C, et al. New score predicting for prognosis in PML-RARA+, AML1-ETO+, or CBFBMYH11+ acute myeloid leukemia based on quantification of fusion transcripts. Blood 2003;102:2746–2755.CrossRefGoogle ScholarPubMed
Gallagher, RE, Yeap, BY, Bi, W, et al. Quantitative real-time RT-PCR analysis of PML-RAR alpha mRNA in acute promyelocytic leukemia: assessment of prognostic significance in adult patients from intergroup protocol 0129. Blood 2003;101:2521–2528.CrossRefGoogle ScholarPubMed
Nucifora, G, Larson, RA, Rowley, JD. Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood 1993;82:712–715.Google ScholarPubMed
Kusec, R, Laczika, K, Knobl, P, et al. AML1/ETO fusion mRNA can be detected in remission blood samples of all patients with t(8;21) acute myeloid leukemia after chemotherapy or autologous bone marrow transplantation. Leukemia 1994;8:735–739.Google ScholarPubMed
Saunders, MJ, Tobal, K, Yin, JA. Detection of t(8;21) by reverse transcriptase polymerase chain reaction in patients in remission of acute myeloid leukaemia type M2 after chemotherapy or bone marrow transplantation. Leuk Res 1994;18:891–895.CrossRefGoogle ScholarPubMed
Jurlander, J, Caligiuri, MA, Ruutu, T, et al. Persistence of the AML1/ETO fusion transcript in patients treated with allogeneic bone marrow transplantation for t(8;21) leukemia. Blood 1996;88:2183–2191.Google Scholar
Kwong, YL, Chan, V, Wong, KF, Chan, TK. Use of the polymerase chain reaction in the detection of AML1/ETO fusion transcript in t(8;21). Cancer 1995;75:821–825.3.0.CO;2-Z>CrossRefGoogle Scholar
Satake, N, Maseki, N, Kozu, T, et al. Disappearance of AML1-MTG8(ETO) fusion transcript in acute myeloid leukaemia patients with t(8;21) in long-term remission. Br J Haematol 1995;91:892–898.CrossRefGoogle Scholar
Sugimoto, T, Das, H, Imoto, S, et al. Quantitation of minimal residual disease in t(8;21)-positive acute myelogenous leukemia patients using real-time quantitative RT-PCR. Am J Hematol 2000;64:101–106.3.0.CO;2-X>CrossRefGoogle Scholar
Marcucci, G, Livak, KJ, Bi, W, et al. Detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia using a novel quantitative reverse transcription polymerase chain reaction assay. Leukemia 1998;12:1482–1489.CrossRefGoogle ScholarPubMed
Barragan, E, Bolufer, P, Moreno, I, et al. Quantitative detection of AML1-ETO rearrangement by real-time RT-PCR using fluorescently labeled probes. Leuk Lymphoma 2001;42:747–756.CrossRefGoogle ScholarPubMed
Viehmann, S, Teigler-Schlegel, A, Bruch, J, et al. Monitoring of minimal residual disease (MRD) by real-time quantitative reverse transcription PCR (RQ-RT-PCR) in childhood acute myeloid leukemia with AML1/ETO rearrangement. Leukemia 2003;17:1130–1136.CrossRefGoogle ScholarPubMed
Leroy, H, , BS, Grardel-Duflos, N, et al. Prognostic value of real-time quantitative PCR (RQ-PCR) in AML with t(8;21). Leukemia 2005;19:367–372.CrossRefGoogle Scholar
Perea, G, Lasa, A, Aventin, A, et al. Prognostic value of minimal residual disease (MRD) in acute myeloid leukemia (AML) with favorable cytogenetics [t(8;21) and inv(16)]. Leukemia 2006;20:87–94.CrossRefGoogle Scholar
Marcucci, G, Caligiuri, MA, Dohner, H, et al. Quantification of CBFbeta/MYH11 fusion transcript by real time RT-PCR in patients with inv(16) acute myeloid leukemia. Leukemia 2001;15:1072–1080.CrossRefGoogle ScholarPubMed
Buonamici, S, Ottaviani, E, Testoni, N, et al. Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood 2002;99:443–449.CrossRefGoogle Scholar
van der Reijden, BA, Simons, A, Luiten, E, et al. Minimal residual disease quantification in patients with acute myeloid leukaemia and inv(16)/CBFB-MYH11 gene fusion. Br J Haematol 2002;118:411–418.CrossRefGoogle ScholarPubMed
Maurillo, L, Buccisano, F, Del Principe, MI, et al. Toward optimization of postremission therapy for residual disease-positive patients with acute myeloid leukemia. J Clin Oncol 2008;26:4944–4951.CrossRefGoogle ScholarPubMed
Lacombe, F, Arnoulet, C, Maynadie, M, et al. Early clearance of peripheral blasts measured by flow cytometry during the first week of AML induction therapy as a new independent prognostic factor: a GOELAMS study. Leukemia 2009;23:350–357.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×