Published online by Cambridge University Press: 03 December 2021
Pressure-driven flow through porous media is a well-investigated subject of fluid and gas dynamics. Since aerogels possess a nanostructure and porosities above 90%, the flow through the pores needs special consideration. We only discussgas flow through aerogels. First, there is of course the conventional viscous flow determined mainly by the pressure gradient and the viscosity, as in Hagen–Poisseuille flow. In such a flow situation, the molecules interact with each other more frequently than with pore walls. Knudsen flow is determined by the interaction of molecules with pore walls, meaning collision events between themselves are negligible. The third possibility is a sliding of molecules along the surface of the pore walls determined by the friction coefficient between molecules and the pore surface. The essential characteristic property determining the flow through a porous body is the so-called permeability. The chapter derives not only the basic flow equations for porous mediabut also discusses experimental approaches to determine gas phase permeability and compare experimental results with theoretical models.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.