Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T13:45:24.441Z Has data issue: false hasContentIssue false

Part III - Linguistic Theories and Frameworks

Published online by Cambridge University Press:  08 July 2022

John W. Schwieter
Affiliation:
Wilfrid Laurier University
Zhisheng (Edward) Wen
Affiliation:
Hong Kong Shue Yan University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Allwood, J. (1982). The complex NP constraint in Swedish. In Engdahl, E. & Ejerhed, E. (Eds.) Readings on unbounded dependencies in Scandinavian languages (pp. 1532). Almqvist & Wiksell.Google Scholar
Anderson, J. R. (1983). The architecture of cognition. Harvard University Press.Google Scholar
Ariel, M. (1999). Cognitive universals and linguistic conventions: The case of resumptive pronouns. Studies in Language, 23, 217269.Google Scholar
Baddely, A. (this volume). Working memory and the challenge of language.Google Scholar
Berwick, R. C., & Weinberg, A. S. (1984). The grammatical basis of linguistic performance: Language use and acquisition. MIT Press.Google Scholar
Branigan, H. P., Pickering, M. J., & Tanaka, M. (2008). Contributions of animacy to grammatical function assignment and word order during production. Lingua, 118, 172189.Google Scholar
Bresnan, J., Dingare, S., & Manning, C. D. (2001). Soft constraints mirror hard constraints: Voice and person in English and Lummi. In Butt, M. & King, T. H. (Eds.), Proceedings of the LFG 01 Conference (pp. 1332). CSLI Publications.Google Scholar
Bybee, J. L. (2010). Language, usage and cognition. Cambridge University Press.CrossRefGoogle Scholar
Bybee, J. L., & Hopper, P. (Eds.). 2001. Frequency and the emergence of linguistic structure. John Benjamins.Google Scholar
Chomsky, N. (1965). Aspects of the theory of syntax. MIT Press.Google Scholar
Chomsky, N. (1981). Lectures on government and binding. Foris.Google Scholar
Chomsky, N. (2005). Three factors in language design. Linguistic Inquiry, 36, 122.Google Scholar
Comrie, B. (1973). Clause structure and movement constraints in Russian. In Corum, C., Smith-Stark, T. C., & Weiser, A., (Eds.), You take the high node and I’ll take the low node (pp. 291304). Chicago Linguistic Society,Google Scholar
Comrie, B. (1978). Ergativity. In Lehmann, W. (Ed.), Syntactic typology: Studies in the phenomenology of language. University of Texas Press.Google Scholar
Comrie, B. (1989). Language universals and linguistic typology (2nd ed.). University of Chicago Press.Google Scholar
Comrie, B. (1998). Rethinking the typology of relative clauses. Language Design, 1, 5986.Google Scholar
Comrie, B. (2013). Alignment of case marking of full noun phrases. In Dryer, M., & Haspelmath, M. (Eds.), The world atlas of language structures (pp.366–369) online. Max Planck Institute for Evolutionary Anthropology. http://wals.info/chapter/98Google Scholar
Cowan, N. (2005). Working memory capacity. Psychology Press.Google Scholar
De Smedt, K. J. M. J. (1994). Paralellism in incremental sentence generation. In Adriaens, G. & Hahn, U. (Eds.), Parallelism in natural language processing. Ablex.Google Scholar
Diessel, H., & Tomasello, M. (2006). A new look at the acquisition of relative clauses. Language, 81, 882906.Google Scholar
Dixon, R. M. W. (1972). The Dyirbal language of North Queensland. Cambridge University Press.CrossRefGoogle Scholar
Dryer, M. S. (1989). Large linguistic areas and language sampling. Studies in Language 13, 257292.CrossRefGoogle Scholar
Dryer, M. S. (1992). The Greenbergian word order correlations. Language, 68, 81138.CrossRefGoogle Scholar
Dryer, M. S. (2005a). Order of relative clause and noun. In Haspelmath, M., Dryer, M., Gil, D., & Comrie, B. (Eds.), The world atlas of structures (pp. 366369). Oxford University Press.Google Scholar
Dryer, M. S . (2005b). Relationship between the order of object and verb and the order of relative clause and noun. In Haspelmath, M., Dryer, M., Gil, D., & Comrie, B. (Eds.), The world atlas of structures (pp. 390393). Oxford: Oxford University Press.Google Scholar
Dryer, M. S. (2013). Order of subject, object and verb. In M. Dryer, & M. Haspelmath (Eds.), The world atlas of language structures online. Max Planck Institute for Evolutionary Anthropology. http://wals.info/chapter/81.Google Scholar
Dyer, W. E. (2017). Minimizing integration cost: A general theory of constituent order (Ph.D. dissertation, University of California Davis).Google Scholar
Engdahl, E., & Ejerhed, E. (Eds.). (1982). Readings on unbounded dependencies in Scandinavian languages. Almqvist & Wiksell.Google Scholar
Engelhardt, P., Filipovic, L., & Hawkins, J. A. (In prep.) Verbs and arguments as predictors in SVO and SOV languages: Processing and typological considerations (MS, University of East Anglia & University of California Davis).Google Scholar
Featherston, S. (2008). The Decathlon model of empirical syntax. In Kepser, S. & Reis, M. (Eds.), Linguistic evidence: Empirical, theoretical and computational perspectives (pp. 187208). de Gruyter.Google Scholar
Francis, E. (2022). Gradient acceptability and linguistic theory. Oxford University Press.Google Scholar
Francis, E., Lam, C., Zheng, C. C., Hitz, J., & Matthews, S. (2015). Resumptive pronouns, structural complexity, and the elusive distinction between grammar and performance: Evidence from Cantonese. Lingua, 162, 5681.CrossRefGoogle Scholar
Frazier, L. (1979). Parsing and constraints on word order. University of Massachusetts Occasional Papers in Linguistics, 5, 177198.Google Scholar
Frazier, L. (1985). Syntactic complexity. In Dowty, D., Karttunen, L., & Zwicky, A. (Eds.), Natural language parsing: Psychological, computational, and theoretical perspectives. Cambridge University Press.Google Scholar
Frazier, L., & Fodor, J. D. (1978). The sausage machine: A new two-stage parsing model. Cognition, 6, 291326.Google Scholar
Futrell, R., Gibson, E., & Levy, R. P. (2020). Lossy-context surprisal: An information-theoretic model of memory effects in sentence processing. Cognitive Science, 44, 154.Google Scholar
Futrell, R., Levy, R. P., & Gibson, E. (2020). Dependency locality as an explanatory principle for word order. Language, 96(2), 371412.Google Scholar
Futrell, R., Mahowald, K., & Gibson, E. (2015). Large-scale evidence of dependency length minimization in 37 languages. Proceedings of the National Academy of Sciences, 112(33), 1033610341.Google Scholar
Gibson, E. (1998). Linguistic complexity: Locality of syntactic dependencies. Cognition, 68, 176.Google Scholar
Gibson, E., Futrell, R., Piantadosi, S. T., Dautriche, I., Mahowald, K., Bergen, L., & Levy, R. P. (2019). How efficiency shapes human language. Trends in Cognitive Sciences, 23(5), 389407.Google Scholar
Greenberg, J. H. (1963). Some universals of grammar with particular reference to the order of meaningful elements. In Greenberg, J. H. (Ed.), Universals of language (pp. 73113). MIT Press,.Google Scholar
Greenberg, J. H. (1966). Language universals, with special reference to feature hierarchies. Mouton.Google Scholar
Greenberg, J. H. (1995). The diachronic typological approach to language. In Shibatani, M. & Bynon, T. (Eds.), Approaches to language typology (pp. 143166). Clarendon Press.Google Scholar
Haig, J. H. (1996). Subjacency and Japanese grammar: A functional account. Studies in Language, 20, 5392.Google Scholar
Hale, J. (2001). A probabilistic early parser as a psycholinguistic model. In Proceedings of NAACL, 2001 (pp. 18). Association for Computational Linguistics.Google Scholar
Haspelmath, M. (1999). Optimality and diachronic adaptation. Zeitschrift für Sprachwissenschaft, 18, 180205.Google Scholar
Haspelmath, M. (2001). The European linguistic area: Standard average European. In Haspelmath, M., König, E., Oesterreicher, W., & Raible, W. (Eds.), Language typology and language universals: An international handbook (pp. 14921510). Walter de Gruyter,Google Scholar
Haspelmath, M. (2008). Creating economical morphosyntactic patterns in language change. In Good, J. (Ed.), Language universals and language change (pp. 185214). Oxford University Press.Google Scholar
Haspelmath, M. (2021). Explaining grammatical coding asymmetries: Form-frequency correspondences and predictability. Journal of Linguistics, 57(3), 605633.Google Scholar
Haspelmath, M., Dryer, M. S., Gil, D., & Comrie, B. (Eds.). (2005). The world atlas of language structures. Oxford University Press.Google Scholar
Hawkins, J. A. (1983). Word order universals. Academic Press.Google Scholar
Hawkins, J. A. (1994). A performance theory of order and constituency. Cambridge University Press.Google Scholar
Hawkins, J. A. (1999). Processing complexity and filler-gap dependencies. Language, 75, 244285.Google Scholar
Hawkins, J. A. (2004). Efficiency and complexity in grammars. Oxford University Press.Google Scholar
Hawkins, J. A. (2007). Processing typology and why psychologists need to know about it. New Ideas in Psychology, 25, 87107.Google Scholar
Hawkins, J. A. (2014). Cross-linguistic variation and efficiency. Oxford University Press.Google Scholar
Hawkins, J. A. (2015). Typological variation and efficient processing. In MacWhinney, B. & O’Grady, W. (Eds.), The handbook of language emergence (pp. 215236). Wiley-Blackwell,.Google Scholar
Hofmeister, P., Jaeger, T. F., Arnon, I., Sag, I. A., & Snider, N. (2013). The source ambiguity problem: Distinguishing the effects of grammar and processing on acceptability judgments. Language and Cognitive Processes, 28(1–2), 4887.Google Scholar
Hofmeister, P., & Sag, I. A. (2010). Cognitive constraints and island effects. Language, 86(2), 366415.Google Scholar
Jaeger, T. F., & Norcliffe, E. (2009). The cross-linguistic study of sentence production: State of the art and a call for action. Language and Linguistics Compass, 3(4), 866887.Google Scholar
Keenan, E. L., & Comrie, B. (1977). Noun phrase accessibility and universal grammar. Linguistic Inquiry, 8, 6399.Google Scholar
Kimball, J. (1973). Seven principles of surface structure parsing in natural language. Cognition, 2, 1547.Google Scholar
Kluender, R., & Kutas, M. (1993). Subjacency as a processing phenomenon. Language and Cognitive Processes, 8, 573633.CrossRefGoogle Scholar
Kuno, S. (1973). The structure of the Japanese language. MIT Press.Google Scholar
Kwon, N., Gordon, P. C., Lee, Y., Kluender, R., & Polinsky, M. (2010). Cognitive and linguistic factors affecting subject/object asymmetry: An eye-tracking study of prenominal relative clauses in Korean. Language, 86, 546582.Google Scholar
Lehmann, C. (1984). Der Relativsatz. Gunter Narr Verlag.Google Scholar
Levelt, W. J. M. (1989). Speaking: From intention to articulation. MIT Press.Google Scholar
Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106, 11261177.Google Scholar
Lewis, R., & Vasishth, S. (2005). An activation-based model of sentence processing as skilled memory retrieval. Cognitive Science, 29, 375419.Google Scholar
Liu, H. (2008). Dependency distance as a metric of language comprehension difficulty. Journal of Cognitive Science, 9(2), 159191.Google Scholar
Lu, B., & Wen, Z. (this volume). Working memory and the language device.Google Scholar
Lu, Q., Xu, C. & Liu, H. (2016). Can chunking reduce syntactic complexity of natural languages? Complexity, 21, 3341.Google Scholar
MacDonald, M. C. (1999). Distributional information in language comprehension, production and acquisition: Three puzzles and a moral. In MacWhinney, B. (Ed.), The emergence of language. Lawrence Erlbaum Associates.Google Scholar
MacDonald, M. C. (2013). How language production shapes language form and comprehension. Frontiers in Psychology, 4, 226.CrossRefGoogle ScholarPubMed
Matsumoto, Y. (1997). Noun-modifying constructions in Japanese: A frame semantic approach. Benjamins.Google Scholar
Matthews, S., & Yip, V. (2003). Relative clauses in early bilingual development: Transfer and universals. In Ramat, A. G. (Ed.), Typology and second language acquisition. Mouton de Gruyter.Google Scholar
Maxwell, D. N. (1979). Strategies of relativation and NP accessibility. Language, 55, 352371.Google Scholar
Miller, G. (1956). The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 8197.Google Scholar
Norcliffe, E., Harris, A. C., & Jaeger, T. F. (2015). Cross-linguistic psycholinguistics and its critical role in theory development: Early beginnings and recent advances. Language, Cognition and Neuroscience, 30(9), 10091032.Google Scholar
O’Grady, W. (2005). Syntactic carpentry: An emergentist approach to syntax. Lawrence Erlbaum Associates.Google Scholar
O’Grady, W. (2012). Three factors in the design and acquisition of language. Wiley Interdisciplinary Reviews: Cognitive Science, 3, 493499.Google Scholar
O’Grady, W. (2017). Working memory and language: From phonology to grammar. Applied Psycholinguistics, 38(6), 13401343.Google Scholar
O’Grady, W. (this volume). Working memory and natural syntax.Google Scholar
Phillips, C. (2013a). On the nature of island constraints I: Language processing and reductionist accounts. In Sprouse, J. & Hornstein, N. (Eds.) Experimental syntax and island effects (pp. 64108). Cambridge University Press.Google Scholar
Phillips, C. (2013b). Some arguments and nonarguments for reductionist accounts of syntactic phenomena. Language and Cognitive Processes, 28 (1–2), 156187.CrossRefGoogle Scholar
Primus, B. (1999). Cases and thematic roles: Ergative, accusative and active. Niemeyer.CrossRefGoogle Scholar
Prince, A., & Smolensky, P. (1993). Optimality theory: Constraint interaction in generative grammar. MIT Press.Google Scholar
Rizzi, L. (1982). Issues in Italian syntax. Dordrecht.Google Scholar
Rizzi, L. (1991). Relativized minimality. MIT Press.Google Scholar
Ross, J.R. (1967). Constraints on variables in syntax (Ph.D. dissertation, Massachusetts Institute of Technology).Google Scholar
Saah, K. K., & Goodluck, H. (1995). Island effects in parsing and grammar: Evidence from Akan. Linguistic Review, 12, 381409.Google Scholar
Sprouse, J., & Hornstein, N. (Eds.). (2013). Experimental syntax and island effects. Cambridge University Press.Google Scholar
Sprouse, J., Wagers, M. & Phillips, C. (2012a). A test of the relation between working-memory capacity and syntactic island effects. Language, 88(1), 82123.Google Scholar
Sprouse, J., Wagers, M. & Phillips, C. (2012b). Working-memory capacity and island effects: A reminder of the issues and the facts. Language, 88(2), 401407.Google Scholar
Stallings, L. M., & MacDonald, M. C. (2011). It’s not just the “heavy NP”: Relative phrase length modulates the production of heavy-NP shift. Journal of Psycholinguistic Research, 40(3), 177187.Google Scholar
Tallerman, M. (1998). Understanding syntax. Arnold.Google Scholar
Tomlin, R. S. (1986). Basic word order: Functional principles. Croom Helm.Google Scholar
Trotzke, A., Bader, M. & Frazier, L. (2013). Third factors and the performance interface in language design. Biolinguistics, 7, 134.Google Scholar
Ueno, M., & Polinsky, M. (2009). Does headedness affect processing? A new look at the VO-OV contrast. Journal of Linguistics, 45(3), 675710.Google Scholar
Wasow, T. (2002). Postverbal behavior. CSLI Publications.Google Scholar
Wasow, T. (2013). The appeal of the PDC program. Frontiers in Psychology, 4, 236.Google Scholar
Yamashita, H. (2002). Scrambled sentences in Japanese: Linguistic properties and motivation for production. Text, 22, 597633.Google Scholar
Zipf, G. K. (1949). Human behavior and the principle of least effort: An introduction to human ecology. Addison-Wesley.Google Scholar

References

Amici, F., Sanchez-Amaro, A., Sebastian-Enesco, C., Allritz, M., Salazar, J., Cacchione, T., & Rossano, F. (2019). The word order of languages predicts native speakers’ working memory. Scientific Reports, 9, 1124.Google Scholar
Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4, 829839.Google Scholar
Baddeley, A. D. (1986). Working memory. Oxford University Press.Google Scholar
Barrouillet, P., & Camos, V. (2007). The time-based resource-sharing model of working memory. In Osaka, N., Logie, R. H., & D’Esposito, M. (Eds.), The cognitive neuroscience of working memory. Oxford Scholarship Online.Google Scholar
Boroditsky, L. (2001). Does language shape thought? English and Mandarin speakers’ conceptions of time. Cognitive Psychology, 43, 122.Google Scholar
Brent, M. R., & Cartwright, T. A. (1996). Distributional regularity and phonotactic constraints are useful for segmentation. Cognition, 61, 93125.Google Scholar
Caplan, D., & Waters, G. S. (1999). Verbal working memory and sentence comprehension. Behavioral and Brain Sciences, 22, 7794.Google Scholar
Caplan, D., & Waters, G. S. (2013). Memory mechanisms supporting syntactic comprehension. Psychonomic Bulletin & Review, 20, 243268.Google Scholar
Carpenter, P. A., & Just, M. A. (1988). The role of working memory in language comprehension. In Klahr, D. & Kotovsky, K. (Eds.), Complex information processing: The impact of Herbert A. Simon (pp. 31–68). Erlbaum.Google Scholar
Casasanto, D. (2005). Crying “Whorf.” Science, 307, 17211722.Google Scholar
Casasanto, D., Boroditsky, L., Phillips, W., Greene, J., Goswami, S., Bocanegra-Thiel, S., Santiago-Diaz, I., Fotokopoulu, O., Pita, R., & Gil, D. (2004). How deep are effects of language on thought? Time estimation in speakers of English, Indonesian, Greek, and Spanish. Proceedings of the Annual Meeting of the Cognitive Science Society, 26, 186191.Google Scholar
Chen, E., Gibson, E., & Wolf, F. (2005). Online syntactic storage costs in sentence comprehension. Journal of Memory and Language, 52, 144169.Google Scholar
Christiansen, M. H., & Chater, N. (2016). The now-or-never bottleneck: A fundamental constraint on language. Behavioral and Brain Sciences, 39, e62CrossRefGoogle ScholarPubMed
Christiansen, M. H., & MacDonald, M. C. (2009). A usage-based approach to recursion in sentence processing. Language Learning, 59, 126161.Google Scholar
Conway, A. R., Kane, M., Bunting, M., Hambrick, D., Wilhelm, O., & Engle, R. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12, 769786.Google Scholar
Cowan, N. (1995). Attention and memory: An integrated framework. Oxford University Press.Google Scholar
Cowan, N. (1999). An embedded-processes model of working memory. In Miyake, A. & Shah, P. (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62101). Cambridge University Press.Google Scholar
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87185.Google Scholar
Cowan, N. (2014). Working memory underpins cognitive development, learning, and education. Educational Psychology Review, 26, 197223.Google Scholar
Cowan, N., Elliott, E. M., Scott, S. J., Morey, C. C., Mattox, S., Hismjatullina, A., & Conway, A. R. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51, 42100.Google Scholar
de Villiers, J. G. (2007). The interface of language and theory of mind. Lingua, 117, 18581878.Google Scholar
Draganski, B., Gaser, C., Kempermann, G., Kuhn, H. G., Winkler, J., Büchel, C., & May, A. (2006). Temporal and spatial dynamics of brain structure changes during extensive learning. Journal of Neuroscience, 26, 63146317.Google Scholar
Dryer, M. S. (1992). The Greenbergian word order correlations. Language, 68, 81138.Google Scholar
Dryer, M. S. (2002). Case distinctions, rich verb agreement, and word order type. Theoretical Linguistics, 28, 151157.Google Scholar
Dryer, M. S. (2009). The branching direction theory revisited. In Scalise, S., Magni, E., & Bisetto, A. (Eds.), Universals of language today (pp. 185207). Springer.Google Scholar
Dryer, M. S., & Haspelmath, M. (Eds.). (2013). The world atlas of language structures online. Max Planck Institute for Evolutionary Anthropology. http://wals.infoGoogle Scholar
Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11, 1923.Google Scholar
Engle, R. W., & Oransky, N. (1999). The evolution from short-term to working memory: Multi-store to dynamic models of temporary storage. In Sternberg, R. (Ed.), The nature of cognition (pp. 514555). MIT Press.Google Scholar
Engle, R., Kane, M., & Tuholski, S. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. In Miyake, A. & Shah, P. (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 102134). Cambridge University Press.Google Scholar
Evans, N., & Levinson, S. 2009. The myth of language universals: Language diversity and its importance for cognitive science. Behavioral and Brain Sciences, 32, 429448.Google Scholar
Fausey, C. M., & Boroditsky, L. (2010). Subtle linguistic cues influence perceived blame and financial liability. Psychonomic Bulletin & Review, 17, 644650.Google Scholar
Fausey, C. M., & Boroditsky, L. (2011). Who dunnit? Cross-linguistic differences in eye-witness memory. Psychonomic Bulletin & Review, 18, 150157.Google Scholar
Finn, A. S., Minas, J. E., Leonard, J. A., Mackey, A. P., Salvatore, J., Goetz, C., West, M. R., Gabrieli, C. F. O., & Gabrieli, J. D. E. (2017). Functional brain organization of working memory in adolescents varies in relation to family income and academic achievement. Developmental Science, 20, e12450CrossRefGoogle ScholarPubMed
Frank, S. L., Trompenaars, T., & Vasishth, S. (2016). Cross-linguistic differences in processing double-embedded relative clauses: Working-memory constraints or language statistics? Cognitive Science, 40, 554578.Google Scholar
Frazier, L. (1985). Syntactic complexity. In Dowty, D. R., Karttunnen, L., & Zwicky, A. M. (Eds.), Natural language parsing: Psychological, computational, and theoretical perspectives (pp. 129189). Cambridge University PressGoogle Scholar
Frazier, L., & Fodor, J. A. (1978). The sausage machine: A new two-stage parsing model. Cognition, 6, 291325.Google Scholar
Garrod, S., & Pickering, M. J. (2004). Why is conversation so easy? Trends in Cognitive Sciences, 8, 811.Google Scholar
Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23, 92409245.Google Scholar
Gibson, E. A. (1998). Linguistic complexity: Locality of syntactic dependencies. Cognition, 68, 176.Google Scholar
Gibson, E., & Pearlmutter, N. J. (1998). Constraints on sentence comprehension. Trends in Cognitive Sciences, 2, 262268.Google Scholar
Gibson, E., & Thomas, J. (1999). Memory limitations and structural forgetting: The perception of complex ungrammatical sentences as grammatical. Language and Cognitive Processes, 14, 225248.Google Scholar
Gilbert, A., Regier, T., Kay, P., & Ivry, R. (2006). Whorf hypothesis is supported in the right visual field but not the left. Proceedings of the National Academy of Sciences, 103, 489494.Google Scholar
Gimenes, M., Rigalleau, F., & Gaonac’h, D. (2009). When a missing verb makes a French sentence more acceptable. Language and Cognitive Processes, 24, 440449.Google Scholar
Gomez, R. L., & Gerken, L. A. (2000). Infant artificial language learning and language acquisition. Trends in Cognitive Sciences, 4, 178186.Google Scholar
Greenberg, J. H. (Ed.). (1963). Universals of language. MIT Press.Google Scholar
Hale, J. (2001). A probabilistic Earley parser as a psycholinguistic model. Proceedings of NAACL, 2, 159166.Google Scholar
Hale, K. (1983). Warlpiri and the grammar of non-configurational languages. Natural Language & Linguistic Theory, 1, 5-47.Google Scholar
Haun, D. B. M., Rapold, C., Call, J., Janzen, G., & Levinson, S. C. (2006). Cognitive cladistics and cultural override in Hominid spatial cognition. Proceedings of the National Academy of Sciences, 103, 1756817573.Google Scholar
Hawkins, J. A. (1994). A performance theory of order and constituency. Cambridge University Press.Google Scholar
Hawkins, J. A. (2004). Efficiency and complexity in grammars. Oxford University Press.Google Scholar
Hawkins, J. A. (2014). Cross-linguistic variation and efficiency. Oxford University Press.Google Scholar
Hunt, E., & Agnoli, F. (1991). The Whorfian hypothesis: A cognitive psychology perspective. Psychological Review, 98, 377389.Google Scholar
Jaeger, L. A. (2015). Working memory and prediction in human sentence parsing (Doctoral dissertation, University of Potsdam). https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/8251/file/jaeger_diss.pdfGoogle Scholar
Just, M. A., & Carpenter, P. A. (1992), A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99, 122149.Google Scholar
Kamide, Y., Altmann, G. T. M., & Haywood, S. L. (2003). The time-course of prediction in incremental sentence processing: Evidence from anticipatory eye movements. Journal of Memory and Language, 49, 133156.Google Scholar
Kane, M. J., Conway, A. R. A., Hambrick, D. Z., & Engle, R. W. (2007). Variation in working memory capacity as variation in executive attention and control. In Conway, A. R. A., Jarrold, C., Kane, M. J., Miyake, A., & Towse, J. N. (Eds.), Variation in working memory (pp. 2148). Oxford University Press.Google Scholar
Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132, 4770.Google Scholar
Konieczny, L. (1996). Human sentence processing: A semantics-oriented parsing approach (Doctoral dissertation, Universität Freiburg). https://www.researchgate.net/publication/36150321_Human_sentence_processing_a_semantics-oriented_parsing_approachGoogle Scholar
Konieczny, L. (2000). Locality and parsing complexity. Journal of Psychological Research, 29, 627645.Google Scholar
Levinson, S. C., & Wilkins, D. P. (Eds.). (2006). Grammars of space: Explorations in cognitive diversity. Cambridge University Press.Google Scholar
Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106, 11261177.Google Scholar
Lewis, R. L., Vasishth, S., & Van Dyke, J. A. (2006). Computational principles of working memory in sentence comprehension. Trends in Cognitive Sciences, 10, 4454.Google Scholar
Li, P., & Gleitman, L. R. (2002). Turning the tables: Language and spatial reasoning. Cognition, 83, 265294.Google Scholar
Maguire, E., Gadian, D., Johnsrude, I, Good, D., Ashburner, J., Frackowiak, R., & Frith, C. (2000) Navigation-related structural changes in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97, 43984403.Google Scholar
Mazuka, R. (1998). The development of language processing strategies: A cross-linguistic study between Japanese and English. Psychology Press.Google Scholar
Mazuka, R., & Lust, B. (1988). Why is Japanese not difficult to process? A proposal to integrate parameter setting in Universal Grammar and parsing. NELS, 18, 333356.Google Scholar
Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49, 270291.Google Scholar
Miller, G. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 8197.Google Scholar
Morrison, A. B., Conway, A. R., & Chein, J. M. (2014). Primacy and recency effects as indices of the focus of attention. Frontiers in Human Neuroscience, 8, 6.Google Scholar
Nakatani, K., & Gibson, E. (2010). An on-line study of Japanese nesting complexity. Cognitive Science, 34, 94112.Google Scholar
Núñez, R. E., & Sweetser, E. (2006). With the future behind them: Convergent evidence from Aymara language and gesture in the crosslinguistic comparison of spatial construals of time. Cognitive Science, 30, 401450.Google Scholar
Onnis, L., & Thiessen, E. (2013). Language experience changes subsequent learning. Cognition, 126, 268284.Google Scholar
Pearlmutter, N. J., & MacDonald, M. C. (1995). Individual differences and probabilistic constraints in syntactic ambiguity resolution. Journal of Memory and Language, 34, 521542.Google Scholar
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306, 499503.Google Scholar
Pickering, M. J., & Garrod, S. (2007). Do people use language production to make predictions during comprehension? Trends in Cognitive Sciences, 11, 105110.Google Scholar
Pienemann, M. (Ed.). (2005). Cross-linguistic aspects of processability theory. John Benjamins Publishing.Google Scholar
Pyers, J. E., & Senghas, A. (2009). Language promotes false-belief understanding evidence from learners of a new sign language. Psychological Science, 20, 805812.Google Scholar
Regier, T., & Kay, P. (2009). Language, thought, and color: Whorf was half right. Trends in Cognitive Sciences, 13, 439446.Google Scholar
Saffran, J. R. (2003). Statistical language learning: Mechanisms and constraints. Current Directions in Psychological Science, 12, 110114.Google Scholar
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 19261928.Google Scholar
Seidenberg, M. S. (1997). Language acquisition and use: Learning and applying probabilistic constraints. Science, 275, 15991603.Google Scholar
Slobin, D. I. (1996). From “thought and language” to “thinking for speaking.” In Gumperz, J. J. & Levinson, S. C. (Eds.), Studies in the social and cultural foundations of language: Rethinking linguistic relativity (pp. 7096). Cambridge University Press.Google Scholar
Spelke, E. S., & Tsivkin, S. (2001). Language and number: A bilingual training study. Cognition, 78, 4588.Google Scholar
Stivers, T., Enfield, N. J., Brown, P., Englert, C., Hayashi, M., Heinemann, T., Hoymann, G., Rossano, F., de Ruiter, J., Yoon, K. E., & Levinson, S. C. (2009). Universals and cultural variation in turn-taking in conversation. Proceedings of the National Academy of Sciences, 106, 1058710592.Google Scholar
Thiessen, E. D., Onnis, L., Hong, S. J., & Lee, K. S. (2019). Early developing syntactic knowledge influences sequential statistical learning in infancy. Journal of Experimental Child Psychology, 177, 211221.Google Scholar
Unsworth, N., Fukuda, K., Awh, E. & Vogel, E. K. (2014). Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval. Cognitive Psychology, 71, 126.Google Scholar
Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37, 498505.Google Scholar
Vasishth, S. (2003). Working memory in sentence comprehension: Processing Hindi center embeddings. Garland Press.Google Scholar
Vasishth, S., & Lewis, R. L. (2006). Argument-head distance and processing complexity: Explaining both locality and anti-locality effects. Language, 82, 767794.Google Scholar
Vasishth, S., Suckow, K., Lewis, R. L., & Kern, S. (2010). Short-term forgetting in sentence comprehension: Cross-linguistic evidence from verb-final structures. Language and Cognitive Processes, 25, 533567.Google Scholar
Winawer, J., Witthoft, N., Frank, M. C., Wu, L., Wade, A. R., & Boroditsky, L. (2007). Russian blues reveal effects of language on color discrimination. Proceedings of the National Academy of Sciences, 104, 77807785.Google Scholar
Woollett, K., & Maguire, E. A. (2011). Acquiring “the knowledge” of London’s layout drives structural brain changes. Current Biology, 21, 21092114.Google Scholar

References

Alexopoulou, T., & Keller, F. 2007. Locality, cyclicity and resumption: At the interface between the grammar and the human sentence processor. Language, 83, 110160.Google Scholar
Aoshima, S., Phillips, C., & Weinberg, A. 2002. Active filler effects and reanalysis: A study of Japanese wh-scrambling constructions. University of Maryland Working Papers in Linguistics, 12, 124.Google Scholar
Archangeli, D., & Pulleyblank, D. 2015. Phonology without universal grammar. Frontiers in Psychology, 6, article 1229.Google Scholar
Bresnan, J. 1977. Variables in the theory of transformations. In Culicover, P., Wasow, T. & Akmajian, A. (Eds.), Formal syntax (pp. 157196). Academic Press.Google Scholar
Bruening, B. 2006. Differences between the wh-scope-marking and wh-copy constructions in Passamaquoddy. Linguistic Inquiry, 37, 2549.Google Scholar
Caplan, D., & Waters, G. 2013. Memory mechanisms supporting syntactic computation. Psychonomic Bulletin & Review, 20, 243268.Google Scholar
Carpenter, P., Miake, A., & Just, M. 1994. Working memory constraints in comprehension: Evidence from individual differences, aphasia, and aging. In Gernsbacher, M. (Ed.), Handbook of psycholinguistics (pp. 10751122). Academic Press.Google Scholar
Chomsky, N. 1956. Three models for the description of language. Institute of Radio Engineers Transactions on Information Theory2(3), 113124.Google Scholar
Chomsky, N. 1980. Rules and representations. Columbia University Press.Google Scholar
Chomsky, N. 1986. Barriers. MIT Press.Google Scholar
Chomsky, N., & Miller, G. 1963. Introduction to the formal analysis of natural languages. In Luce, R., Bush, R., & Galanter, E. (Eds.), Handbook of mathematical psychology (Vol. 2, pp. 269321). Wiley.Google Scholar
Cinque, G. 2020. The syntax of relative clauses: A unified analysis. Cambridge University Press.Google Scholar
Clifton, C., & Frazier, L. 1989. Comprehending sentences with long-distance dependencies. In Carlson, G. & Tanenhaus, M. (Eds.), Linguistic structure in language processing (pp. 273317). Kluwer.Google Scholar
Cowan, N. 2015. George Miller’s magical number of immediate memory in retrospect: Observations on the faltering progress of science. Psychological Review, 122, 536541.Google Scholar
Crain, S., Goro, T., & Thornton, R. 2006. Language acquisition is language change. Journal of Psycholinguistic Research, 35, 3149.Google Scholar
Culicover, P. 1993. Evidence against ECP accounts of the that-t effect. Linguistic Inquiry, 24, 557561.Google Scholar
Dyakonova, M. 2009. A phase-based approach to Russian free word order. LOT.Google Scholar
Gardner, H. 1985. The mind’s new science: A history of the cognitive revolution. Basic Books.Google Scholar
Gathercole, S. 2008. Working memory. In Roediger, H. (Ed.), Cognitive psychology of memory (pp. 3352). Elsevier.Google Scholar
Getz, H. 2019. Acquiring wanna: Beyond universal grammar. Language Acquisition, 26, 119143.Google Scholar
Gibson, E. 1998. Linguistic complexity: Locality of syntactic dependencies. Cognition, 68, 176.Google Scholar
Goodall, G. 2004. On the syntax and processing of wh-questions in Spanish. In Chand, V., Kelleher, A., Rodrígues, A., & Schmeiser, B. (Eds.), Proceedings of the West Coast Conference on Formal Linguistics (pp. 101114). Cascadilla Press.Google Scholar
Hawkins, J. 2004. Efficiency and complexity in grammars. Oxford University Press.Google Scholar
Hawkins, J. 2014. Cross-linguistic variation and efficiency. Oxford University Press.Google Scholar
Hofmeister, P., & Sag, I. 2010. Cognitive constraints and island effects. Language, 86, 366415.Google Scholar
Jackendoff, R. 2007. A parallel architecture perspective on language processing. Brain Research, 1146, 222.Google Scholar
Jaeggli, O. 1980. Remarks on to-contraction. Linguistic Inquiry, 11, 239245.Google Scholar
Jespersen, O. 1933. Essentials of English grammar. Allen and UnwinGoogle Scholar
Kayne, R. 1994. The antisymmetry of syntax. MIT Press.Google Scholar
Kluender, R. 1998. On the distinction between strong and weak islands: A processing perspective. In Culicover, P. & McNally, L. (Eds.), The limits of syntax (Syntax and Semantics 29), 241279. Academic Press.Google Scholar
Kluender, R., & Kutas, M. 1993. Subjacency as a processing phenomenon. Language and Cognitive Processes, 8, 573633.Google Scholar
Lewis, R., Vasishth, S., & Van Dyke, J. 2006. Computational principles of working memory in sentence comprehension. Trends in Cognitive Sciences, 10, 447454.Google Scholar
Lutken, C. J., Legendre, G., & Omaki, A. 2020. Syntactic creativity errors in children’s wh-questions. Cognitive Science, 44(7), e12849.Google Scholar
MacWhinney, B. 2015. Introduction. In MacWhinney, B. & O’Grady, W. (Eds.), The handbook of language emergence (pp. 131). Wiley-Blackwell.Google Scholar
McDaniel, D. 1989. Partial and multiple wh-movement. Natural Language and Linguistic Theory, 7, 565604.Google Scholar
McDaniel, D., Chiu, B., & Maxfield, T. 1995. Parameters for wh-movement types: Evidence from child English. Natural Language and Linguistic Theory, 13, 709753.Google Scholar
Miller, G. 1956. Human memory and the storage of information. Transactions on Information Theory, 2(3), 129137.Google Scholar
Miller, G., & Chomsky, N. 1963. Finitary models of language users. In Luce, R., Bush, R., & Galanter, E. (Eds.), Handbook of mathematical psychology (Vol. 2, 419491. Wiley.Google Scholar
O’Grady, W. 2005. Syntactic carpentry: An emergentist approach to syntax. Erlbaum.Google Scholar
O’Grady, W. 2015. Anaphora and the case for emergentism. In MacWhinney, B. & O’Grady, W. (Eds.), The handbook of language emergence, 100122. Wiley-Blackwell.Google Scholar
O’Grady, W. 2021. Natural syntax: An emergentist primer. http://ling.hawaii.edu/william-ogrady/ and researchgate.netGoogle Scholar
Pearl, L., & Sprouse, J. 2013Syntactic islands and learning biases: Combining experimental syntax and computational modeling to investigate the language acquisition problemLanguage Acquisition20, 2368.Google Scholar
Perlmutter, D. 1968. Deep and surface constraints in syntax (Doctoral dissertation, Department of Linguistics, MIT).Google Scholar
Phillips, C. 2013. On the nature of island constraints I: Language processing and reductionist accounts. In Sprouse, J. & Hornstein, N. (Eds.), Experimental syntax and island effects (pp. 64108). Cambridge University Press.Google Scholar
Phillips, C., Kazanina, N., & Abada, S. 2005. ERP effects of the processing of syntactic long-distance dependencies. Cognitive Brain Research, 22, 407428.Google Scholar
Pickering, M. 2000. No evidence for traces in sentence comprehension. Behavioral and Brain Sciences, 23, 4748.Google Scholar
Rizzi, L. 1982. Issues in Italian syntax. Foris.Google Scholar
Schwering, S. & MacDonald, M. 2020. Verbal working memory as emergent from language comprehension and production. Frontiers in Psychology, 14, Article 68. doi: 10.3389/fnhum.2020.00068Google Scholar
Sprouse, J., Wagers, M., & Phillips, C. 2012. A test of the relation between working memory capacity and syntactic island effects. Language, 88, 82123.Google Scholar
Thornton, R. 1990. Adventures in long-distance moving: The acquisition of complex wh-questions (Doctoral dissertation, University of Connecticut).Google Scholar
Traxler, M., & Pickering, M. 1996. Plausibility and the processing of unbounded dependencies: An eye-tracking study. Journal of Memory and Language, 35, 454475.Google Scholar
Wagers, M., & Phillips, C. 2009. Multiple dependencies and the role of the grammar in real-time comprehension. Journal of Linguistics, 45, 395433.Google Scholar
Warren, P., Speer, S., & Schafer, A. 2003. Wanna-contraction and prosodic disambiguation in US and NZ EnglishWellington Working Papers in Linguistics15, 3149.Google Scholar
Yngve, V. 1960. A model and an hypothesis for language structure. Proceedings of the American Philosophical Society, 104, 444466.Google Scholar
Yngve, V. 1998. Clues from the Depth Hypothesis: A reply to Geoffrey Sampsons’ review. Computational Linguistics, 24, 633640.Google Scholar

References

Anderson, J. R. (1983). A spreading activation theory of memoryJournal of Verbal Learning and Verbal Behavior22(3), 261295.Google Scholar
Anderson, J. R. (1993). Rules of the mind. Erlbaum.Google Scholar
Anderson, J. R., & Reder, L. M. (1999). The fan effect: New results and new theories. Journal of Experimental Psychology-General, 128, 186197.Google Scholar
Baddeley, A. D. (1990). Human memory, theory and practice. Erlbaum.Google Scholar
Baddeley, A. D. (2000a). The episodic buffer: A new component of working memoryTrends in Cognitive Science4(11), 417423.Google Scholar
Baddeley, A. D. (2000b). Short-term and working memory. In Tulving, E., & Craik, F. I. M. (Eds.), The Oxford handbook of memory (pp. 7792). Oxford University Press.Google Scholar
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Bower, G. A. (Ed.), Recent advances in learning and motivation (Vol. 8, pp. 647667). Academic Press.Google Scholar
Bartek, B., Lewis, R. L., Vasishth, S., & Smith, M. R. (2011). In search of on-line locality effects in sentence comprehension. Journal of Experimental Psychology: Learning. Memory and Cognition, 37(5), 178198.Google Scholar
Behaghel, O. (1909). Beziehungen zwischen Umfang und Reihenfolge von Satzgliedern. Indogermanische Forschungen, 25, 110142.Google Scholar
Behaghel, O. (1932). Deutsche Syntax: Eine geschichtliche Darstellung, Bd. 4: Wortstellung; Periodenbau. Winter.Google Scholar
Bresnan, J., Asudeh, A., Toivonen, I., & Wechsler, S. (2015). Lexical functional syntax (2nd ed.). Wiley Blackwell.Google Scholar
Bresnan, J., Cueni, A., Nikitina, T., & Baayen, H. (2007). Predicting the dative alternation. In Boume, G., Kraemer, I., & Zwarts, J. (Eds.), Cognitive foundations of interpretation (pp. 6994). Royal Netherlands Academy of Science.Google Scholar
Bybee, J. (2006). From usage to grammar: The mind’s response to repetition. Language, 82(4), 711733.Google Scholar
Camos, V., & Barrouillet, P. (2011). Factors of working memory development: The time-based resource-sharing model approach. In Barrouillet, P., & Gaillard, V. (Eds.), Cognitive development and working memory (pp. 151176). Psychology Press.Google Scholar
Chen, B., Ning, A., Bi, H., & Dunlap, S. (2008). Chinese subject-relative clauses are more difficult to process than the object-relative clauses. Acta Psychologica, 129, 616.Google Scholar
Choi, H. W. (1999). Optimizing structure in context: Scrambling and information structure. CSLI Publications.Google Scholar
Choi, H. W. (2007). Length and order: A corpus study of Korean dative-accusative construction. Discourse and Cognition, 14(3), 207227.Google Scholar
Chomsky, N. (1957). Syntactic structures. Mouton.Google Scholar
Chomsky, N. (1988). Language and problems of knowledge: The Managua lectures. MIT Press.Google Scholar
Covington, M. A. (2001). A fundamental algorithm for dependency parsing. In Miller, J. A. & Smith, J. (Eds.), Proceedings of the 39th Annual ACM Southeast Conference, Athens, Georgia, 2001 (pp. 95–102). http://web.stanford.edu/~mjkay/covington.pdfGoogle Scholar
Covington, M. A. (2003). Free-word-order dependency parser in prolog. University of Georgia: Artificial Intelligence Center. www.covingtoninnovations.com/mc/dparser/dparser.pdfGoogle Scholar
Cowan, N. (1995). Attention and memory: An integrated framework. Oxford University Press.Google Scholar
Cowan, N. (1999). An embedded processes model of working memory. In Miyake, A. & Shah, P. (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62101). Cambridge University Press.Google Scholar
Crabbé, B., Gulordava, K., & Merlo, P. (2015). Dependency length minimisation effects in short spans: A large-scale analysis of adjective placement in complex noun phrases. In ACL Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Short Papers) (pp. 477482). The Association for Computational Linguistics.Google Scholar
den Dikken, M. (2013). Phrase structure grammar. Cambridge University PressGoogle Scholar
Dryer, M. (1992). The Greenbergian word order correlations. Language, 68, 81138.Google Scholar
Engle, R. W., Cantor, J., & Carullo, J. J. (1992). Individual differences in working memory and comprehension: A test of four hypotheses. Journal of Experimental Psychology: Learning, Memory and Cognition, 5, 972992.Google Scholar
Eppler, E. (2004). The syntax of German-English code-switching. (Doctoral thesis, University College London).Google Scholar
Ertel, S. (1977). Where do the subjects of the sentences come from? In Rosenberg, S. (Eds.), Sentence production developments in research and theory (pp. 141168). Lawrence Erlbaum.Google Scholar
Faghiri, P., & Samvelian, P. (2014). Constituent ordering in Persian and the weight factor. In Christopher, P. (Ed.), Empirical issues in syntax and semantics 10 (EISS10). www.cssp.cnrs.fr/eiss10/eiss10_faghiri-and-samvelian.pdf.Google Scholar
Fedorenko, E., Piantadosi, S., & Gibson, E. (2012). Processing relative clauses in supportive contexts. Cognitive Science, 36, 471497.Google Scholar
Ferrer-i-Cancho, R. (2004). Euclidean distance between syntactically linked words. Physical Review A, 70, 056135.Google Scholar
Ferrer-i-Cancho, R. (2013). Hubiness, length and crossings and their relationships in dependency trees. Glottometrics, 25, 121.Google Scholar
Ferrer-i-Cancho, R. (2014). Random crossings in dependency trees. arXiv:1305.4561 [cs.CL]. https://arxiv.org/ftp/arxiv/papers/1305/1305.4561.pdfGoogle Scholar
Ferrer-i-Cancho, R., Gómez-Rodríguez, C., & Esteban, J. L. (2018). Are crossing dependencies really scarce? Physica A, 493, 311329.Google Scholar
Frazier, L. (1979). On comprehending sentences: Syntactic parsing strategies. (Doctoral dissertation. University of Connecticut).Google Scholar
Frazier, L. (1985). Syntactic complexity. In Dowty, D. R., Karttunen, L., & Zwicky, A. (Eds.), Natural language parsing: Psychological, computational, and theoretical perspectives (pp. 129–89). Cambridge University Press.Google Scholar
Futrell, R., Mahowald, K., & Gibson, E. (2015). Large-scale evidence for dependency length minimization in 37 languages. Proceedings of the National Academy of Sciences, 112(33), 1033610341.CrossRefGoogle ScholarPubMed
Futrell, R., Levy, R. P., & Gibson, E. (2020). Dependency locality as an explanatory principle for word order. Language, 96(2), 371412.Google Scholar
Gibson, E. (1998). Linguistic complexity: Locality of syntactic dependencies. Cognition, 68, 176.Google Scholar
Gibson, E. (2000). The dependency locality theory: A distance-based theory of linguistic complexity. In Marantz, A., Miyashita, Y., & O’Neil, W. (Eds.), Image, language, brain (pp. 95126). MIT Press.Google Scholar
Gibson, E., Piantadosi, S., Brink, K., Bergen, L., Lim, E., & Saxe, R. (2013). A noisy-channel account of cross-linguistic word order variation. Psychological Science, 4(7), 10791088.Google Scholar
Gibson, E., & Wu, I. (2013). Processing Chinese relative clauses in context. Language Cognition and Neuroscience, 28, 125155.Google Scholar
Gildea, D., & Temperley, D. (2010). Do grammars minimize dependency length? Cognitive Science, 34, 286310.Google Scholar
Givón, T. (2009). The genesis of syntactic complexity. Benjamins.Google Scholar
Gómez-Rodríguez, C., & Ferrer-i-Cancho, R. (2017). Scarcity of crossing dependencies: A direct outcome of a specific constraint? Physical Review E, 96, 062304.Google Scholar
Grodner, D., & Gibson, E. (2005). Some consequences of the serial nature of linguistic input. Cognitive Science, 29(2), 261290.Google Scholar
Greenberg, J. H. (1963). Some universals of grammar with particular reference to the order of meaningful elements. In Greenberg, J. H. (Ed.), Universals of language (pp. 4070). MIT Press.Google Scholar
Haken, H. (1983). Synergetics, an introduction: Nonequilibrium phase transitions and self-organization in physics, chemistry, and biology. Springer-Verlag.Google Scholar
Hawkins, J. A. (1994). A performance theory of order and constituency. Cambridge University Press.Google Scholar
Hiranuma, S. (1999). Syntactic difficulty in English and Japanese: A textual study. UCL Working Papers in Linguistics, 11, 309322.Google Scholar
Hofmeister, P, Jaeger, T. F., Sag, I. A., Arnon, I., & Snider, N. (2007). Locality and accessibility in wh-questions. In Featherston, S. & Sternefeld, W. (Eds.), Roots: Linguistics in search of its evidential base. Mouton de Gruyter. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.141.5440&rep=rep1&type=pdfGoogle Scholar
Hofmeister, P,. & Sag, I. A. (2010). Cognitive constraints and island effects. Language, 86, 366415.Google Scholar
Hsiao, F., & Gibson, E. (2003). Processing relative clauses in Chinese. Cognition, 90, 327.Google Scholar
Hudson, R. (1995). Measuring Syntactic Difficulty. http://dickhudson.com/wp-content/uploads/2013/07/Difficulty.pdfGoogle Scholar
Hudson, R. (1998). English grammar. Routledge.Google Scholar
Hudson, R. (2007). Language networks: A new word grammar. Cambridge University Press.Google Scholar
Hudson, R. (2010 ). An introduction to word grammar. Cambridge University Press.Google Scholar
Hurford, J. (2012). The origin of grammar. Oxford University Press.Google Scholar
Husain, H. S., Vasishth, S., & Srinivasan, N. (2014). Strong expectations cancel locality effects: Evidence from Hindi. PLoS ONE, 9(7), e100986.Google Scholar
Jaeger, T. F. (2010). Redundancy and reduction: Speakers manage syntactic information density. Cognitive Psychology, 61, 2362.Google Scholar
Jiang, J. Y., & Liu, H. T. (2015). The effects of sentence length on dependency distance, dependency direction and the implications. Language Sciences, 50, 93104.Google Scholar
Jiang, J. Y., & Liu, H. T. (Eds.). (2018). Quantitative analysis of dependency structures. De gruyter Mouton.Google Scholar
Jiang, J. Y., & Ouyang, J. H. (2018). Minimization and probability distribution of dependency distance in the process of second language acquisition. In Jiang, J. Y. & Liu, H. T. (Eds.), Quantitative analysis of dependency structures (pp. 167190). Walter de Gruyter.Google Scholar
Kauffman, S. (1993). Origins of order: Self organisation and selection in evolution. Oxford University Press.Google Scholar
Köhler, R. (1986). Zur linguistischen Synergetik. Struktur und Dynamik der Lexik. Brockmeyer.Google Scholar
Köhler, R. (2005). Synergetic linguistics. In Köhler, R., Altmann, G., & Piotrowski, R. G. (Eds.). Quantitative linguistics. An international handbook (pp. 760775). Walter de Gruyter; 2005.Google Scholar
Lakoff, G., & Johnson, M. (2003). Metaphors we live by. University of Chicago Press.Google Scholar
Langacker, R. W. (2008). Cognitive grammar: A basic introduction. Oxford University Press.Google Scholar
Langus, A., & Nespor, M. (2010). Cognitive systems struggling for word order. Cognitive Psychology, 60(4), 291318.Google Scholar
Levy, R., Fedorenko, E., & Gibson, E. (2013). The syntactic complexity of Russian relative clauses. Journal of Memory and Language, 69, 461495.Google Scholar
Levy, R., & Keller, F. (2013). Expectation and locality effects in German verb-final structures. Journal of Memory and Language, 68, 199222.Google Scholar
Li, W. P., & Yan, J. W. (2020). Probability distribution of dependency distance based on a treebank of Japanese EFL learners’ interlanguage. Journal of Quantitative Linguistics, 28(2), 172186. DOI: 10.1080/09296174.2020.1754611Google Scholar
Li, Z., Zhou, J., & Zhao, H. (2009). Cross language dependency parsing using a bilingual lexicon. Proceedings of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the AFNLP (pp. 5563). DOI: 10.3115/1687878.1687888Google Scholar
Lin, Y., & Garnsey, S. M. (2010). Animacy and the resolution of temporary ambiguity in relative clause comprehension in Mandarin. In Yamashita, H., Hirose, Y., & Packard, J. (Eds.), Processing and producing head-fifinal structures (pp. 241275). Springer.Google Scholar
Lin, Y. W. (2011). Locality versus anti-locality effects in Mandarin sentence comprehension. In Jing-Schmidt, Zhuo (Ed.), Proceedings of the 23rd North American conference on Chinese linguistics (NACCL-23) (Vol. 1, pp. 200214). University of Oregon.Google Scholar
Liu, H. T. (2006). Syntactic parsing based on Dependency Relations. Grkg/Humankybernetik, 47(3), 124135.Google Scholar
Liu, H. T. (2007). Probability distribution of dependency distance. Glottometrics, 15, 112.Google Scholar
Liu, H. T. (2008). Dependency distance as a metric of language comprehension difficulty. Journal of Cognitive Science, 9(2), 159191.Google Scholar
Liu, H. T. (2018). Language as a human-driven complex adaptive system. Physics of Life Reviews, 26 –27, 149151.Google Scholar
Liu, H. T., Xu, C. S., & Liang, J. Y. (2017). Dependency distance: A new perspective on syntactic patterns in natural languages. Physics of Life Reviews, 21, 171193.Google Scholar
Liu, H. T., Zhao, Y. Y., & Li, W. W. (2009). Chinese syntactic and typological properties based on dependency syntactic treebanks. Poznań Studies in Contemporary Linguistics, 45(4), 509523.Google Scholar
Lovett, M. C., Reder, L. M., & Lebière, C. (1999). Modeling working memory in a unified architecture: An ACT-R perspective. In Miyake, A. & Shah, P. (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 135182). Cambridge University Press.Google Scholar
Lu, Q., & Liu, H. T. (2015). Does dependency distance distribute regularly? The Journal of Zhejiang University (Humanities and Social Science), 4, 6376 (in Chinese).Google Scholar
Lu, Q., & Liu, H. T. (2016). A quantitative study on the relationship between crossing and distance of human language. Journal of Shanxi University (Philosophy and social Sciences), 39(4), 4956 (in Chinese).Google Scholar
Lu, Q., Xu, C. S., & Liu, H. T. (2015). The influence of chunking on dependency crossing and distance. Complexity, 21, 3341.Google Scholar
McDonald, R., Crammer, K., & Pereira, F. (2005). Online large-margin training of dependency parsers. Proceedings of ACL 2005, 91–98. https://www.aclweb.org/anthology/P05-1012.pdfGoogle Scholar
Mel’čuk, I. (2003). Levels of dependency in linguistic description: Concepts and problems. In Agel, V., Eichinnger, L., Eroms, H. W., Hellwig, P., Herringer, H. J., & Lobin, H. (Eds.), Dependency and valency. An international handbook of contemporary research (Vol. 1, pp. 189229). De Gruyter.Google Scholar
Nairne, J. (1990). A feature model of immediate memory. Memory & Cognition, 18, 251269.Google Scholar
Neath, I. (2000). Modeling the effects of irrelevant speech on memory. Psychonomic Bulletin & Review, 7, 403423.Google Scholar
Nivre, J., & Scholz, M. (2004). Deterministic dependency parsing of English text. Proceedings of the 20th International Conference on Computational Linguistics. www.aclweb.org/anthology/C04-1010.pdfGoogle Scholar
Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 411421.Google Scholar
Oberauer, K., & Lewandowsky, S. (2013). Evidence against decay in verbal working memory. Journal of Experimental Psychology: General, 142(2), 380411.Google Scholar
Oya, M. (2013). Degree centralities, closeness centralities, and dependency distances of different genres of texts. Selected Papers from the 17th Conference of Pan-Pacific Applied Linguistics; 2013 (pp. 42–53). www.paaljapan.org/conference2012/pdf/006oya.pdfGoogle Scholar
Pollard, C., & Sag, I. A. (1994). Head-driven phrase structure grammar. University of Chicago Press.Google Scholar
Quirk, R., Greenbaum, S., Leech, G., & Svartvik, J. (1972). A grammar of contemporary English. Longman.Google Scholar
Saussure, F. (1959). Course in general linguistics. Philosophical Library.Google Scholar
Temperley, D. (2007). Minimization of dependency length in written English. Cognition, 105, 300333.Google Scholar
Temperley, D. (2008). Dependency length minimization in natural and artificial languages. Journal of Quantitative Linguistics, 15, 256282.Google Scholar
Temperley, D., & Gildea, D. (2018). Minimizing syntactic dependency lengths: Typological/cognitive universal? Annual Review of Linguistics, 4, 6780.Google Scholar
Tesnière, L. (1959). Eléments de la syntaxe structurale. Klincksieck.Google Scholar
Tily, H. (2010). The role of processing complexity in word order variation and change (Doctoral dissertation, Stanford University).Google Scholar
Ueno, M., & Polinksy, M. (2009). Does headedness affect processing? A new look at the VO–OV contrast. Journal of Linguistics, 45, 675710.Google Scholar
VanDyke, J. A. (2007). Interference effects from grammatically unavailable constituents during sentence processing. Journal of Experimental Psychology: Learning, Memory and Cognition, 33(2), 407430.Google Scholar
VanDyke, J. A., & Lewis, R. L. (2003). Distinguishing effects of structure and decay on attachment and repair: A retrieval interference theory of recovery from misanalyzed ambiguities. Journal of Memory and Language, 49(3), 285316.Google Scholar
Vasishth, S., & Lewis, R. L. (2006). Argument-head distance and processing complexity: Explaining both locality and anti-locality effects. Language, 82(4), 767794.Google Scholar
Vergauwe, E., & Cowan, N. (2015). Theories of short-term memory. In Wright, J. D. (Ed.), International encyclopedia of social & behavioral science (2nd ed., vol. 21, pp. 901908). Elsevier.Google Scholar
Wang, H., & Liu, H. T. (2014). The effect of length and complexity on constituent ordering in written English. Poznań Studies in Contemporary Linguistics, 50(4), 477494.Google Scholar
Wang, Y. Q., & Liu, H. T. (2017). The effects of genre on dependency distance and dependency direction. Language Sciences, 59, 135147.Google Scholar
Wasow, T. (1997). End-weight from the speaker’s perspective. Journal of Psycholinguistic Research, 26, 347361.Google Scholar
White, K. G. (2012). Dissociation of short-term forgetting from the passage of time. Journal of Experimental Psychology: Learning, Memory and Cognition, 38, 255259.Google Scholar
Xiang, Y., Agnieszka, F., & Jonas, K. (2019). Dependency length minimization vs. word order constraints: an empirical study on 55 treebanks. In Chen, X. Y. & Ferrer-i-Cancho, R. (Eds.), Proceedings of the First Workshop on Quantitative Syntax (Quasy, SyntaxFest 2019) (pp. 8997). Association for Computational Linguistics.Google Scholar
Xu, C. S. (2015). The use and the omission of Chinese conjunction “er.” Journal of Shanxi University(Philosophy and Social Sciences Edition), 38(2), 5561. (in Chinese)Google Scholar
Xu, C. S. (2018). Differences between English subject post-modifiers and object post-modifiers: From the perspective of dependency distance. In Jiang, J. Y., & Liu, H. T. (Eds.), Quantitative analysis of dependency structures (pp. 261–76). Walter de Gruyter.Google Scholar
Xu, C. S., & Liu, H. T. (2015). Can familiarity lessen the effect of locality? A case study of Mandarin Chinese subjects and the following adverbials. Poznań Studies in Contemporary Linguistics, 51(3), 463486.Google Scholar
Yamada, H., & Matsumoto, Y. (2003). Statistical dependency analysis with support vector machines. In Proceedings of the Eighth International Conference on Parsing Technologies (pp. 195–206). www.aclweb.org/anthology/W03–3023.pdfGoogle Scholar
Yamashita, H., & Chang, F. (2001). Long before short preference in the production of a head-final language. Cognition, 81, B45B55.Google Scholar
Yan, J. W., & Liu, H. T. (2019). Which annotation scheme is more expedient to measure syntactic difficulty and cognitive demand? In Chen, X. Y., & Ferrer-i-Cancho, R. (Eds.), Proceedings of the First Workshop on Quantitative Syntax (Quasy, SyntaxFest 2019) (pp. 1624). Association for Computational Linguistics.Google Scholar
Zipf, G. (1949). Human behavior and the principle of least effort: An introduction to human ecology. Hafner.Google Scholar

References

Anderson, J. R. (1983). The architecture of cognition. Harvard University Press.Google Scholar
Athanasopoulos, P. (2015). Conceptual representation in bilinguals: The role of language specificity and conceptual change. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing (pp. 275292). Cambridge University Press.Google Scholar
Baars, B. (1988). A cognitive theory of consciousness. Cambridge University Press.Google Scholar
Baddeley, A. (2007). Working memory, thought, and action. Oxford University Press.Google Scholar
Barrett, H. C., & Kurzban, R. (2006). Modularity in cognition: Framing the debate. Psychological Review, 113, 628647.Google Scholar
Bastos, A. M., Vezoli, J., & Fries, P. (2015). Communication through coherence with inter-areal delays. Current Opinion in Neurobiology, 31, 173180.Google Scholar
Beckner, C., Blythe, R., Bybee, J., Christiansen, M., Croft, W., Ellis, N., Holland, J., Ke, J., Larsen-Freeman, D., & Schoenemann, T. (2009). Language is a complex adaptive system: Position paper. Language Learning, 59, 126.Google Scholar
Bergeron, V. (2007). Anatomical and functional modularity in cognitive science: Shifting the focus. Philosophical Psychology, 20, 175195.Google Scholar
Cantor, J., & Engle, R. W. (1993). Working-memory capacity as long-term memory activation: An individual-differences approach. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 11011114.Google Scholar
Carruthers, P. (2006). The architecture of the mind: Massive modularity and the flexibility of thought. Clarendon.Google Scholar
Chomsky, N. (1995). The minimalist program. MIT Press.Google Scholar
Cowan, N. (1995). Attention and memory: An integrated framework. Oxford University Press.Google Scholar
Cowan, N., Saults, J. S., & Blume, C. L. (2014). Central and peripheral components of working memory storage. Journal of Experimental Psychology: General, 143, 18061836.Google Scholar
Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning & Verbal Behavior, 19, 450466.Google Scholar
de Bruin, A., Samuel, A. G., & Duñabeitia, J. A. (2018). Voluntary language switching: When and why do bilinguals switch between their languages? Journal of Memory and Language, 103, 2843.Google Scholar
de Groot, A. M. B., & Starreveld, P. A. (2015). Parallel language activation in bilinguals’ word production and its modulating factors: A review and computer simulations. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing. Cambridge University Press.Google Scholar
Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79, 137.Google Scholar
D’Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66, 115142.Google Scholar
Driver, J., Davis, G., Russell, C., Turatto, M., & Freeman, E. (2001). Segmentation, attention and phenomenal visual objects. Cognition, 80, 6195.Google Scholar
French, L. M. (2003). Phonological working memory and L2 acquisition: A developmental study of Quebec Francophone children learning English. (Doctoral dissertation, Université Laval, Quebec).Google Scholar
Fuster, J. M. (2015). The prefrontal cortex (5th ed.). Elsevier.Google Scholar
Gathercole, S. E. (2006). Nonword repetition and word learning: The nature of the relationship. Applied Psycholinguistics 27, 513543.Google Scholar
Grosjean, F. (2010). Bilingual: Life and reality. Harvard University Press.Google Scholar
Grosjean, F., & Li, P. (2013). The psycholinguistics of bilingualism. Wiley-Blackwell.Google Scholar
Hummel, K. M. (2009). Aptitude, phonological memory, and second language proficiency in nonnovice adult learners. Applied Psycholinguistics, 30, 225249.Google Scholar
Jackendoff, R. (1987). Consciousness and the computational mind. MIT Press.Google Scholar
Jackendoff, R. (1997). The architecture of the language faculty. MIT Press.Google Scholar
Jiang, N. (2015). Six decades of research on lexical representation and processing in bilinguals. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing. Cambridge University Press.Google Scholar
Juffs, A. (2015). Working memory and sentence processing: A commentary. In Wen, Z., Mota, M. B., & McNeill, A. (Eds.), Working memory in second language acquisition and processing (pp. 125135). Multilingual Matters.Google Scholar
Juffs, A., & Harrington, M. W. (2011). Aspects of working memory in L2 learning. Language Teaching, 44, 137166.Google Scholar
Kleinman, D., & Gollan, T. H. (2016). Speaking two languages for the price of one: Bypassing language control mechanisms via accessibility-driven switches. Psychological Science, 27, 700714.Google Scholar
Krauzlis, R. J., Bollimunta, A., Arcizet, F., & Wang, L. (2014). Attention as an effect not a cause. Trends in Cognitive Sciences, 18, 457464.Google Scholar
Kroll, J. F., Gullifer, J. W., McClain, R., Rossi, E., & Martín, M. C. (2015). Selection and control in bilingual comprehension and production. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing. Cambridge University Press.Google Scholar
Masoura, E. V., & Gathercole, S. E. (2005). Contrasting contributions of phonological short-term memory and long-term knowledge to vocabulary learning in a foreign language. Memory, 13, 422429.Google Scholar
McElree, B. (1998). Attended and non-attended states in working memory: Accessing categorized structures. Journal of Memory and Language, 38 , 225252.Google Scholar
Meuter, R. (2009). Neurolinguistic contributions to understanding the bilingual mental lexicon. In Pavlenko, A. (Ed.), The bilingual mental lexicon: Interdisciplinary approaches (pp. 125). Multilingual Matters.Google Scholar
Miller, E. K., & Buschman, T. J. (2014). Neural mechanisms for the executive control of attention. In Kastner, S. & Nobre, A. C. (Eds.), The Oxford handbook of attention. Oxford University Press.Google Scholar
Nobre, A. C., & Mesulam, M.-M. (2014). Large-scale networks for attentional biases. In Kastner, S. & Nobre, A. C. (Eds.), The Oxford handbook of attention. Oxford University Press.Google Scholar
Oberauer, K. (2013). The focus of attention in working memory: From metaphors to mechanisms. Frontiers in Human Neuroscience, 7, 673.Google Scholar
Oberauer, K., Farrell, S., Jarrold, C., & Lewandowsky, S. (2016). What limits working memory capacity? Psychological Bulletin, 142, 758799.Google Scholar
Palva, J. M., Monto, S., Kulashekhar, S., & Palva, S. (2010). Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proceedings of the National Academy of Sciences, USA, 107, 75807585.Google Scholar
Posner, M. I. (1994). Attention: The mechanisms of consciousness. Proceedings of the National Academy of Sciences, USA, 91, 73987403.Google Scholar
Robertson, D., & Sorace, A. (1999). Losing the V2 constraint. In Klein, E. C. & Martohardjono, G. (Eds.), The development of second language grammars: A generative approach (pp. 317361). Benjamins.Google Scholar
Sandler, W. (1989). Phonological representation of the sign: Linearity and nonlinearity in American Sign LanguageForis.Google Scholar
Schwartz, A. (2015). Bilingual lexical access during written sentence comprehension. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing (pp. 327348). Cambridge University Press.Google Scholar
Sharwood Smith, M. A. (2014). In search of conceptual frameworks for relating brain activity to language function. Frontiers in Psychology, 5, 716.Google Scholar
Sharwood Smith, M., & Truscott, J. (2014). The multilingual mind: A modular processing perspective. Cambridge University Press.Google Scholar
Shook, A., & Marian, V. (2013). The Bilingual Language Interaction Network for Comprehension of Speech. Bilingualism: Language and Cognition, 16, 304324.Google Scholar
Szmalec, A., Brysbaert, M., & Duyck, W. (2013). Working memory and (second) language processing. In Altariba, J. & Isurin, L. (Eds.), Memory, language, and bilingualism: Theoretical and applied approaches (pp. 7494). Cambridge University Press.Google Scholar
Truscott, J. (2006). Optionality in second language acquisition: A generative, processing-oriented account. International Review of Applied Linguistics, 44, 311330.Google Scholar
Truscott, J. (2015a). Consciousness and second language learning. Multilingual Matters.Google Scholar
Truscott, J. (2015b). Consciousness in SLA: A modular perspective. Second Language Research, 31, 413434.Google Scholar
Truscott, J. (in press). Working memory and language in the modular mind. New York: Routledge.Google Scholar
Truscott, J., & Sharwood Smith, M. (2019). The internal context of bilingual processing. Benjamins.Google Scholar
Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28, 127154.Google Scholar
van Hell, J. G., Litcofsky, K. A., & Ting, C. Y. (2015). Intra-sentential code-switching: Cognitive and neural approaches. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing. Cambridge University Press.Google Scholar
Wen, Z. (2014). Theorizing and measuring working memory in first and second language research. Language Teaching, 47, 174190.Google Scholar
Wen, Z., Mota, M. B., & McNeill, A. (Eds.). (2015). Working memory in second language acquisition and processing. Multilingual Matters.Google Scholar
White, L. (2003). Second language acquisition and Universal Grammar. Cambridge University Press.Google Scholar
Williams, J. N. (2012). Working memory and SLA. In Gass, S. M. & Mackey, A. (Eds.), The Routledge handbook of second language acquisition (pp. 427441). Routledge.Google Scholar
Williams, J. (2015). Working memory in SLA research: Challenges and prospects. In Wen, Z., Mota, M. B., & McNeill, A. (Eds.), Working memory in second language acquisition and processing (pp. 301307). Multilingual Matters.Google Scholar
Winke, P. M. (2005). Individual differences in adult Chinese second language acquisition: The relationships among aptitude, memory and strategies for learning (Doctoral dissertation, Georgetown University).Google Scholar
Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., & Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 16091612.Google Scholar

References

Andrade, J. (2001). Working memory in perspective. Taylor & Francis.Google Scholar
Baddeley, A., Gathercole, S. E., & Papagno, C. (1998). The phonological loop as a language learning device. Psychological Review, 105, 158173.Google Scholar
Baddeley, A. D. (2012). Working memory: Theories, models and controversies. Annual Review of Psychology, 63, 130.Google Scholar
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Bower, G. A. (Ed.), The psychology of learning and motivation (Vol. 8, pp. 4789). New York: Academic Press.Google Scholar
Barrouillet, P., & Camos, V. (2012). As time goes by: Temporal constraints in working memory. Current Directions in Psychological Science, 21(6): 413419.Google Scholar
Barrouillet, P., & Camos, V. (2015). Working memory: Loss and reconstruction. Psychology Press.Google Scholar
Bever, T. G. (1970). The cognitive basis for linguistic structure. Cognition and the development of language. ed. by Hayes, John R., 279362. Wiley and Sons.Google Scholar
Carruthers, P. (2013). The evolution of working memory. Proceedings of National Academy of Sciences, 110 (Suppl. 2), 1037110378.Google Scholar
Chen, B., Ning, A., Bi, H., & Dunlap, S. (2008). Chinese subject-relative clauses are more difficult to process than the object-relative clauses. Acta Psychologica, 129(1), 6165.Google Scholar
Chomsky, N. (1965). Aspects of the theory of syntax. MIT Press.Google Scholar
Chomsky, N. (1986). Barrier. MIT Press.Google Scholar
Christiansen, M. H., & Chater, N. (2016). Creating language: Integrating evolution, acquisition, and processing. MIT Press.Google Scholar
Conway, A. R. A., Jarrold, C., Kane, M. J., Miyake, A., & Towse, J. N. (2007). Variation in working memory. Oxford University Press.Google Scholar
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87185.Google Scholar
Cowan, N. (2005). Working memory capacity. Psychology Press.Google Scholar
Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Progress in Brain Research, 169, 323338.Google Scholar
Cowan, N. (2017). The many faces of working memory and short-term storagePsychonomic Bulletin & Review, 24, 11581170. doi: 10.3758/s13423-016-1191-6Google Scholar
Culicover, P., & Jackendoff, R. (2006). The simpler syntax hypothesis. Trends in Cognitive Sciences, 10, 413418.Google Scholar
Dryer, M. (1992). The Greenbergian word order correlations. Language 68:81139.Google Scholar
Ellis, N. C. (1996). Sequencing in SLA: Phonological memory, chunking and points of order. Studies in Second Language Acquisition, 18, 91126.Google Scholar
Ellis, N. C. (2017). Chunking. In Hundt, M., Mollin, S., & Pfenninger, S. (Eds.), The changing English language: Psycholinguistic perspectives (pp. 113147). Cambridge University Press.Google Scholar
Fan, J. (1984). Duoxiang NP ju [Multiple NP Sentences]. Zhongguo Yuwen, 1, 2834.Google Scholar
Ferrer-i-Cancho, R. (2017). Optimization models of natural communication. Journal of Quantitative Linguistics. http://arxiv.org/abs/1412.2486Google Scholar
Ferrer-i-Cancho, R., & Gómez-Rodríguez, C. (2019). Anti-dependency distance minimization in short sequences. A graph theoretic approach. Journal of Quantitative Linguistics, 28(1), 5076.Google Scholar
Frazier, Lyn, (1978). On comprehending sentences: Syntactic parsing strategies.) (Doctoral dissertation, University of Massachusetts–Amherst).Google Scholar
Futrell, R. (2017). Memory and locality in natural language (Doctoral thesis, Massachusetts Institute of Technology).Google Scholar
Futrell, R., Mahowald, K., & Gibson, E. (2015). Large-scale evidence of dependency length minimization in 37 languages. Proceedings of the National Academy of Sciences, 112(33), 1033610341.Google Scholar
Gibson, E. (1998). Linguistic complexity: Locality of syntactic dependencies. Cognition, 68, 176.Google Scholar
Gibson, E. (2000). The dependency locality theory: A distance-based theory of linguistic complexity. Image, language, brain 2000, 95–126.Google Scholar
Gibson, E., Futrell, R., Piantadosi, S., Dautriche, I., Mahowald, K., Bergen, L., & Levy, R. P. (2019). How efficiency shapes human language. Trends in Cognitive Sciences, 23(5), 389407.Google Scholar
Gobet, F., & Clarkson, G. (2004). Chunks in expert memory: Evidence for the magical number four…or is it two? Memory, 12, 732747. http://dx.doi.org/10.1080/09658210344000530Google Scholar
Gomez-Rodriguez, C., Christiansen, M., & Ferrer-i-Cancho, R. (2019). Memory limitations are hidden in grammar. arXiv preprint arXiv:1908.06629. https://doi.org/10.7910/DVN/XHRIYXGoogle Scholar
Gómez-Rodríguez, C., Christiansen, M. H., & Ferrer-i-Cancho, R. (2020, April 14–17). Cognitive constraints built into formal grammars: Implications for language evolution. In Ravignani, A. et al. (Eds.), The evolution of language: proceedings of the 13th international conference (EvoLang13). Brussels, Belgium.Google Scholar
Hakes, D. T. (1972). Effects of reducing complement construction on sentence comprehension. Journal of Verbal Learning and Verbal Behavior. 11, 278286Google Scholar
Hawkins, J. A. (2004). Efficiency and complexity in grammars. Oxford University Press.Google Scholar
Hawkins, J. A. (2014). Cross-linguistic variation and efficiency. Oxford University PressGoogle Scholar
Hocket, C. (1961). Linguistic elements and their relation. Language, 37, 2953.Google Scholar
Hudson, R. (1995). Word meaning. Routledge.Google Scholar
Jackendoff, R. (2007). A parallel architecture perspective on language processing. Brain Research, 1146, 222.Google Scholar
Jackendoff, R. (2011). What is the human language faculty? Two views. Language, 87, 586624.Google Scholar
Kimball, J. (1973). Seven principles of surface structure parsing in natural language. Cognition, 2, 1546.Google Scholar
Larsen-Freeman, D. (2012). On the roles of repetition in language teaching and learning. Applied Linguistics Review, 3, 195210.Google Scholar
Liu, H. (2008). Dependency distance as a metric of language comprehension difficulty. Journal of Cognitive Science, 9(2), 159191Google Scholar
Logie, R. H. (1996). The seven ages of working memory. In Richardson, J. T. E., Engle, R. W., Hasher, L., Logie, R. H., Stoltzfus, E. R., & Zacks, R. T. (Eds.), Working memory and human cognition (pp. 3165). Oxford University Press.Google Scholar
Logie, R. H., Camos, V., & Cowan, N. (2021). Working memory: State of the science. Oxford University Press.Google Scholar
Lu, Bingfu. (1983). Wuxian digui de tiaojian he youxian qiefen [The conditions of infinite recursion and finite segmentation]. Hanyu Xuexi [Chinese Learning], 1, 2329.Google Scholar
Lu, Bingfu. (1993). Hexin Tuidao Yufa [A head-oriented grammar]. Shanghai Education Press.Google Scholar
Lu, Bingfu. (2001). What is the chunk in linguistic construction? Proceedings of the Third International Conference on Cognitive Science: 452457. University of Science and Technology of China Press.Google Scholar
Lu, Bingfu. (2009). The parallelism between NPs and clauses in terms of pragmatic effects on word order, Cahiers Linguistique–Asie Orientale 38(2), 177219.Google Scholar
Lu, Q., Xu, C., & Liu, H. (2016). Can chunking reduce syntactic complexity of natural languages? Complexity, 21, 3341Google Scholar
Majerus, S. (2013). Language repetition and short-term memory: An integrative framework. Frontiers in Human Neuroscience 7, 357. doi: 10.3389/fnhum.2013.00357Google Scholar
Miller, G. (1956a). The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 8197.Google Scholar
Miller, G. (1956b). Human memory and the storage of information. IRE Transaction on Information Theory, 2(3), 129137.Google Scholar
Miller, G., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. Holt.Google Scholar
Miyake, A., & Shah, P. (1999). Models of working memory: Mechanisms of active maintenance and executive control. Cambridge University Press.Google Scholar
Nicenboim, B., Vasishth, S., Gattei, C., Sigman, M., & Kliegl, R. (2015). Working memory differences in long-distance dependency resolution. Frontiers in Psychology (6), 312.Google Scholar
Oberauer, K., & Lewandowsky, S. (2013). Evidence against decay in verbal working memory. Journal of Experimental Psychology: General, 142, 380411.Google Scholar
Oberauer, K., & Lewandowsky, S. (2014). Further evidence against decay in working memory. Journal of Memory and Language, 73, 1530.Google Scholar
O’Grady, W. (2012). Three factors in the design and acquisition of language. Wiley Interdisciplinary Reviews: Cognitive Science, 3, 493499.Google Scholar
O’Grady, W. (2015). Processing determinism. Language Learning, 65(1), 632.Google Scholar
O’Grady, W. (2017). Working memory and language: From phonology to grammar. Applied Psycholinguistics, 38(06), 13401343.Google Scholar
Pierce, L. J., Genesee, F., Delcenserie, A., & Morgan, G. (2017). Variations in phonological working memory: Linking early language experiences and language learning outcomes. Applied Psycholinguistics, 38, 1265–1302.Google Scholar
Schütze, C. (1999). English expletive constructions are not inflected. Linguistic Inquiry, 30(3), 467484.Google Scholar
Speer, S. R., & Clifton, C. Jr. (1998). Plausibility and argument structure in sentence comprehension. Memory and Cognition, 26(5), 965978.Google Scholar
Waugh, N. C., & Norman, D. A. (1965). Primary memory. Psychological Review, 72, 89104.Google Scholar
Wells, R. S. (1947). Immediate constituent, Language, 23, 81118.Google Scholar
Wen, Z. (2016). Working memory and second language learning: Towards an integrated approach. Multilingual Matters.Google Scholar
Wen, Z. (2019). Working memory as language aptitude: The Phonological/Executive Model. In Wen, Z., Skehan, P., Biedron, A., Li, S., & Sparks, R. (Eds.), Language aptitude: Advancing theory, testing, research and practice (pp. 187214). Routledge.Google Scholar
Wen, Z., & Li, S. (2019). Working memory in L2 learning and processing. In Schwieter, J. & Benati, A. (Eds.), The Cambridge handbook of language learning (pp. 365389). Cambridge University Press.Google Scholar
Yngve, V. H. (1961). Depth hypothesis. Proceedings of Symposia in Applied Mathematics, 11, 130138Google Scholar
Zipf, G. (1949). Human behavior and the principle of least effort: An introduction to human ecology. Hafner.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×