Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T19:47:14.076Z Has data issue: false hasContentIssue false

33 - A Look Back at Pioneering Theories of the Creative Brain

from Part IV - Novel Combinatorial Forms of the Imagination

Published online by Cambridge University Press:  26 May 2020

Anna Abraham
Affiliation:
University of Georgia
Get access

Summary

A few brave researchers ventured into the arena of creative cognition, with three in particular – Kenneth Heilman (2003), Arne Dietrich (2004), and Alice Flaherty (2005) – putting forth specific theoretical constructs amenable to empirical research. These theories emerged at the front end of a large body of neuroimaging research regarding brain correlates of creative cognition emerging in the early part of the twenty-first century. Hundreds of studies followed these pioneers’ thoughtful attempts to isolate creative capacity within brain structure and function. Two major questions are addressed: (1) How did their theories hold up in light of empirical data? (2) Do their theoretical constructs have implications for the nascent hypothesizing around imagination ability?

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, A. (2016). The Imaginative Mind. Human Brain Mapping, 37(11), 41974211. doi:10.1002/hbm.23300.Google Scholar
Aminoff, E., Gronau, N., and Bar, M. (2007). The Parahippocampal Cortex Mediates Spatial and Nonspatial Associations. Cerebral Cortex, 17(7), 14931503. doi:10.1093/cercor/bhl078.Google Scholar
Beaty, R. E., Benedek, M., Kaufman, S. B., and Silvia, P. J. (2015). Default and Executive Network Coupling Supports Creative Idea Production. Scientific Reports, 5, 10964. doi:10.1038/srep10964.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., and Schacter, D. L. (2016). Creative Cognition and Brain Network Dynamics. Trends in Cognitive Sciences, 20(2), 8795. doi:10.1016/j.tics.2015.10.004.CrossRefGoogle ScholarPubMed
Binder, J. R., and Desai, R. H. (2011). The Neurobiology of Semantic Memory. Trends in Cognitive Sciences, 15(11), 527536. doi:10.1016/j.tics.2011.10.001.CrossRefGoogle ScholarPubMed
Binet, A. (1905). New Methods for the Diagnosis of the Intellectual Level of Subnormals. L’Année Psychologique, 12, 191244.Google Scholar
Bogen, J. E., and Bogen, G. M. (1988). Creativity and the Corpus Callosum. Psychiatric Clinics of North America, 11(3), 293301.CrossRefGoogle ScholarPubMed
Campbell, D. T. (1960). Blind Variation and Selective Retention in Creative Thought as in Other Knowledge Processes. Psychological Review, 67(6), 380400. doi:Doi10.1037/H0040373.CrossRefGoogle ScholarPubMed
Carlsson, I., Wendt, P. E., and Risberg, J. (2000). On the Neurobiology of Creativity: Differences in Frontal Activity between High and Low Creative Subjects. Neuropsychologia, 38, 873885.CrossRefGoogle ScholarPubMed
Daselaar, S. M., Porat, Y., Huijbers, W., and Pennartz, C. M. (2010). Modality-Specific and Modality-Independent Components of the Human Imagery System. Neuroimage, 52(2), 677685. doi:10.1016/j.neuroimage.2010.04.239.CrossRefGoogle ScholarPubMed
Dietrich, A. (2003). Functional Neuroanatomy of Altered States of Consciousness: The Transient Hypofrontality Hypothesis. Consciousness and Cognition, 12, 231256.CrossRefGoogle ScholarPubMed
Dietrich, A.(2004). The Cognitive Neuroscience of Creativity. Psychonomic Bulletin & Review, 11, 10111026.Google Scholar
Emery, N. J., and Clayton, N. S. (2004). The Mentality of Crows: Convergent Evolution of Intelligence in Corvids and Apes. Science, 306(5703), 19031907. doi:10.1126/science.1098410.Google Scholar
Fernandez, H. H., and Friedman, J. H. (1999). Punding on L-dopa. Movement Disorders, 14(5), 836838.Google Scholar
Fink, A., Benedek, M., Grabner, R. H., Staudt, B., and Neubauer, A. C. (2007). Creativity Meets Neuroscience: Experimental Tasks for the Neuroscientific Study of Creative Thinking. Methods, 42, 6876.Google Scholar
Fink, A., Grabner, R. H., Benedek, M., and Neubauer, A. C. (2006). Divergent Thinking Training Is Related to Frontal Electroencephalogram Alpha Synchronization. The European Journal of Neuroscience, 23, 22412246.CrossRefGoogle ScholarPubMed
Fink, A., and Neubauer, A. C. (2006). EEG Alpha Oscillations during the Performance of Verbal Creativity Tasks: Differential Effects of Sex and Verbal Intelligence. International Journal of Psychophysiology, 62, 4653.CrossRefGoogle ScholarPubMed
Flaherty, A. W. (2005). Frontotemporal and Dopaminergic Control of Idea Generation and Creative Drive. Journal of Comparative Neurology, 493, 147153.CrossRefGoogle ScholarPubMed
Giambra, L. M. (1995). A Laboratory Method for Investigating Influences on Switching Attention to Task-Unrelated Imagery and Thought. Consciousness and Cognition, 4(1), 121. doi:10.1006/ccog.1995.1001.CrossRefGoogle ScholarPubMed
Goel, V., and Vartanian, O. (2005). Dissociating the Roles of Right Ventral Lateral and Dorsal Lateral Prefrontal Cortex in Generation and Maintenance of Hypotheses in Set-Shift Problems. Cerebral Cortex, 15(8), 11701177. doi:10.1093/cercor/bhh217CrossRefGoogle ScholarPubMed
Grabner, R. H., Fink, A., and Neubauer, A. C. (2007). Brain Correlates of Self-Rated Originality of Ideas: Evidence from Event-Related Power and Phase-Locking Changes in the EEG. Behavioral Neuroscience, 121, 224.CrossRefGoogle ScholarPubMed
Green, A. E., Spiegel, K. A., Giangrande, E. J., et al. (2017). Thinking Cap Plus Thinking Zap: tDCS of Frontopolar Cortex Improves Creative Analogical Reasoning and Facilitates Conscious Augmentation of State Creativity in Verb Generation. Cerebral Cortex, 27(4), 26282639. doi:10.1093/cercor/bhw080.Google Scholar
Guilford, J. P. (1950). Creativity. American Psychologist, 5(9), 444454.CrossRefGoogle ScholarPubMed
Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., and Alkire, M. T. (2004). Structural Brain Variation and General Intelligence. Neuroimage, 23(1), 425433. doi:10.1016/J.Neuroimage.2004.04.025.CrossRefGoogle ScholarPubMed
Hecht, P. M., Will, M. J., Schachtman, T. R., Welby, L. M., and Beversdorf, D. Q. (2014). Beta-Adrenergic Antagonist Effects on a Novel Cognitive Flexibility Task in Rodents. Behavioral Brain Research, 260, 148154. doi:10.1016/j.bbr.2013.11.041.Google Scholar
Heilman, K. M., Nadeau, S. E., and Beversdorf, D. O. (2003). Creative Innovation: Possible Brain Mechanisms. Neurocase, 9(5), 369379. doi:10.1076/neur.9.5.369.16553.Google Scholar
Heilman, K. M., and Valenstein, E. (2012). Clinical Neuropsychology. 5th edition. Oxford, UK: Oxford University Press.Google Scholar
Howard-Jones, P. A., Blakemore, S.-J., Samuel, E. A., Summers, I. R., and Claxton, G. (2005). Semantic Divergence and Creative Story Generation: An fMRI Investigation. Cognitive Brain Research, 25, 240250.Google Scholar
Jaušovec, N. (2000). Differences in Cognitive Processes between Gifted, Intelligent, Creative, and Average Individuals while Solving Complex Problems: An EEG Study. Intelligence, 28, 213237.Google Scholar
Jones-Gotman, M., and Milner, B. (1977). Design Fluency: The Invention of Nonsense Drawings after Focal Cortical Lesions. Neuropsychologia, 15(4–5), 653674.Google Scholar
Jung, R. E., Brooks, W. M., Yeo, R. A., et al. (1999). Biochemical Markers of Intelligence: A Proton MR Spectroscopy Study of Normal Human Brain. Proceedings of the Royal Society B-Biological Sciences, 266(1426), 13751379.CrossRefGoogle ScholarPubMed
Jung, R. E., Flores, R. A., and Hunter, D. (2016). A New Measure of Imagination Ability: Anatomical Brain Imaging Correlates. Frontiers in Psychology, 7, 496. doi:10.3389/fpsyg.2016.00496.CrossRefGoogle ScholarPubMed
Jung, R. E., Gasparovic, C., Chavez, R. S., et al. (2009). Biochemical Support for the “Threshold” Theory of Creativity: A Magnetic Resonance Spectroscopy Study. Journal of Neuroscience, 29(16), 53195325. doi:10.1523/Jneurosci.0588–09.2009.CrossRefGoogle ScholarPubMed
Jung, R. E., and Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of Intelligence: Converging Neuroimaging Evidence. Behavioral and Brain Sciences, 30(2), 135154. doi:10.1017/S0140525x07001185.CrossRefGoogle ScholarPubMed
Jung, R. E., Mead, B. S., Carrasco, J., and Flores, R. A. (2013). The Structure of Creative Cognition in the Human Brain. Frontiers in Human Neuroscience, 7. doi:Artn 330 Doi 10.3389/Fnhum.2013.00330.CrossRefGoogle ScholarPubMed
Jung, R. E., and Vartanian, O. (2018). The Cambridge Handbook of the Neuroscience of Creativity: Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Jung-Beeman, M., Bowden, E. M., Haberman, J., et al. (2004). Neural Activity When People Solve Verbal Problems with Insight. PLoS Biology, 2, e97.CrossRefGoogle ScholarPubMed
Karama, S., Colom, R., Johnson, W., et al. (2011). Cortical Thickness Correlates of Specific Cognitive Performance Accounted for by the General Factor of Intelligence in Healthy Children Aged 6 to 18. Neuroimage, 55(4), 14431453. doi:10.1016/J.Neuroimage.2011.01.016.CrossRefGoogle ScholarPubMed
Kenett, Y. N., Levy, O., Kenett, D. Y., et al. (2018). Flexibility of Thought in High Creative Individuals Represented by Percolation Analysis. Proceedings of the National Academy of Sciences of the United States of America, 115(5), 867872. doi:10.1073/pnas.1717362115.Google Scholar
Limb, C. J., and Braun, A. R. (2008). Neural Substrates of Spontaneous Musical Performance: An FMRI Study of Jazz Improvisation. PLoS One, 3(2), e1679. doi:10.1371/journal.pone.0001679.Google Scholar
Liu, S., Chow, H. M., Xu, Y., et al. (2012). Neural Correlates of Lyrical Improvisation: An FMRI Study of Freestyle Rap. Scientific Reports, 2, 834. doi:10.1038/srep00834.Google Scholar
Liu, S., Erkkinen, M. G., Healey, M. L., et al. (2015). Brain Activity and Connectivity during Poetry Composition: Toward a Multidimensional Model of the Creative Process. Human Brain Mapping. doi:10.1002/hbm.22849.Google Scholar
Liu, Z., Zhang, J., Xie, X., et al. (2018). Neural and Genetic Determinants of Creativity. Neuroimage, 174, 164176. doi:10.1016/j.neuroimage.2018.02.067.Google Scholar
Mak, L. E., Minuzzi, L., MacQueen, G., et al. (2017). The Default Mode Network in Healthy Individuals: A Systematic Review and Meta-Analysis. Brain Connect, 7(1), 2533. doi:10.1089/brain.2016.0438.Google Scholar
Martindale, C. (1999). Biological Bases of Creativity. In Sternberg, R. J. (ed.), Handbook of Creativity. New York, NY: Cambridge University Press, 137152.Google Scholar
Martindale, C., and Greenough, J. (1973). The Differential Effect of Increased Arousal on Creative and Intellectual Performance. The Journal of Genetic Psychology, 123, 329335.CrossRefGoogle ScholarPubMed
Martindale, C., and Hasenfus, N. (1978). EEG Differences as a Function of Creativity, Stage of the Creative Process, and Effort to Be Original. Biological Psychology, 6, 157167.CrossRefGoogle Scholar
Mashal, N., Faust, M., Hendler, T., and Jung-Beeman, M. (2007). An fMRI Investigation of the Neural Correlates Underlying the Processing of Novel Metaphoric Expressions. Brain and Language, 100, 115126.Google Scholar
Miller, B. L., Cummings, J., Mishkin, F., et al. (1998). Emergence of Artistic Talent in Frontotemporal Dementia. Neurology, 51, 978982.Google Scholar
Mink, J. W. (1996). The Basal Ganglia: Focused Selection and Inhibition of Competing Motor Programs. Progress in Neurobiology, 50(4), 381425.Google Scholar
Mölle, M., Marshall, L., Lutzenberger, W., et al. (1996). Enhanced Dynamic Complexity in the Human EEG during Creative Thinking. Neuroscience Letters, 208, 6164.Google Scholar
Neisser, U., Boodoo, G., Bouchard Jr, T. J., et al. (1996). Intelligence: Knowns and Unknowns. American Psychologist, 51, 77.Google Scholar
Petsche, H. (1996). Approaches to Verbal, Visual and Musical Creativity by EEG Coherence Analysis. International Journal of Psychophysiology, 24, 145159.Google Scholar
Shen, W., Yuan, Y., Liu, C., et al. (2016). Is Creative Insight Task-Specific? A Coordinate-Based Meta-Analysis of Neuroimaging Studies on Insightful Problem Solving. International Journal of Psychophysiology, 110, 8190. doi:10.1016/j.ijpsycho.2016.10.001.Google Scholar
Simonton, D. K. (2003). Scientific Creativity as Constrained Stochastic Behavior: The Integration of Product, Person, and Process Perspectives. Psychological Bulletin, 129(4), 475494.Google Scholar
Stein, M. I. (1953). Creativity and Culture. Journal of Psychology, 36, 311322. doi:10.1080/00223980.1953.9712897.Google Scholar
Vartanian, O., and Skov, M. (2014). Neural Correlates of Viewing Paintings: Evidence from a Quantitative Meta-Analysis of Functional Magnetic Resonance Imaging Data. Brain and Cognition, 87, 5256. doi:10.1016/j.bandc.2014.03.004Google Scholar
Waxman, S. G., and Geschwind, N. (1974). Hypergraphia in Temporal Lobe Epilepsy. Neurology, 24(7), 629636.Google Scholar
Wu, X., Yang, W., Tong, D., et al. (2015). A Meta-Analysis of Neuroimaging Studies on Divergent Thinking Using Activation Likelihood Estimation. Human Brain Mapping, 36(7), 27032718.CrossRefGoogle ScholarPubMed
Yamadori, A., Mori, E., Tabuchi, M., Kudo, Y., and Mitani, Y. (1986). Hypergraphia: A Right Hemisphere Syndrome. Journal of Neurology, Neurosurgery, and Psychiatry, 49(10), 11601164.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×