Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T07:47:52.879Z Has data issue: false hasContentIssue false

6 - Telomere Dynamics and Aging Related Diseases

from Part I - Biomedical Aspects

Published online by Cambridge University Press:  10 January 2019

Rocío Fernández-Ballesteros
Affiliation:
Universidad Autónoma de Madrid
Athanase Benetos
Affiliation:
Université de Lorraine and Institut national de la santé et de la recherche médicale (INSERM) Nancy
Jean-Marie Robine
Affiliation:
INSERM
Get access

Summary

Telomeres are specialised non-coding repetitive DNA-protein structures that form protective caps at the ends of eucaryotic chromosomes. They safeguard the chromosome ends, maintain genomic integrity and play a crucial role in replicative senescence, one of the main mechanisms of aging in cultured somatic cells. In epidemiological studies, short telomere length (TL) has been associated with increased risk of degenerative diseases and diminished survival. TL at birth, which is strongly determined genetically, and TL attrition during growth are seemingly the main explanation for inter-individual variation in TL across adults. This implies that the association between TL and adult-onset diseases largely reflects elements that have fashioned TL during early life.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adaikalakoteswari, A., Balasubramanyam, M., Mohan, V. Telomere shortening occurs in Asian Indian Type 2 diabetic patients. Diabet Med. 2005; 22(9): 1151–6.CrossRefGoogle ScholarPubMed
Ahmad, S., Heraclides, A., Sun, Q., et al. Telomere length in blood and skeletal muscle in relation to measures of glycaemia and insulinaemia. Diabet Med. 2012; 29(10): e37781.CrossRefGoogle ScholarPubMed
Al Khaldi, R., Mojiminiyi, O., AlMulla, F., Abdella, N. Associations of TERC single nucleotide polymorphisms with human leukocyte telomere length and the risk of Type 2 diabetes mellitus. PloS One. 2015; 10(12): e0145721.CrossRefGoogle ScholarPubMed
Al-Attas, O. S., Al-Daghri, N. M., Alokail, M. S., et al. Adiposity and insulin resistance correlate with telomere length in middle-aged Arabs: the influence of circulating adiponectin. Eur J Endocrinol. 2010; 163(4): 601–7.CrossRefGoogle ScholarPubMed
Alder, J. K., Stanley, S. E., Wagner, C. L., Hamilton, M., Hanumanthu, V. S., Armanios, M. Exome sequencing identifies mutant TINF2 in a family with pulmonary fibrosis. Chest. 2015; 147(5): 1361–8.CrossRefGoogle Scholar
Arem, H., Moore, S. C., Patel, A., et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern Med. 2015; 175(6): 959–67.CrossRefGoogle ScholarPubMed
Armanios, M. Telomerase and idiopathic pulmonary fibrosis. Mutat Res. 2012; 730(1–2): 52–8.CrossRefGoogle ScholarPubMed
Armanios, M., Blackburn, E.H. The telomere syndromes. Nat Rev Genet. 2012; 13(10): 693704.CrossRefGoogle ScholarPubMed
Armanios, M. Y., Chen, J. J.-L., Cogan, J. D., et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med. 2007; 356(13): 1317–26.CrossRefGoogle ScholarPubMed
Artandi, S. E., DePinho, R. A. Telomeres and telomerase in cancer. Carcinogenesis. 2010; 31(1): 918.CrossRefGoogle ScholarPubMed
Aubert, G., Baerlocher, G. M., Vulto, I., Poon, S. S., Lansdorp, P. M. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet. 2012; 8(5): e1002696.CrossRefGoogle ScholarPubMed
Aviv, A. Genetics of leukocyte telomere length and its role in atherosclerosis. Mutat Res. 2012; 730(1–2): 6874.CrossRefGoogle ScholarPubMed
Aviv, A., Hunt, S. C., Lin, J., Cao, X., Kimura, M., Blackburn, E. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR. Nucleic Acids Res. 2011; 39(20): e134.CrossRefGoogle ScholarPubMed
Aviv, A., Valdes, A., Gardner, J. P., Swaminathan, R., Kimura, M., Spector, T. D. Menopause modifies the association of leukocyte telomere length with insulin resistance and inflammation. J Clin Endocrinol Metab. 2006; 91(2): 635–40.CrossRefGoogle ScholarPubMed
Babizhayev, M. A., Vishnyakova, K. S., Yegorov, Y. E. Oxidative damage impact on aging and age-related diseases: drug targeting of telomere attrition and dynamic telomerase activity flirting with imidazole-containing dipeptides. Recent Pat Drug Deliv Formul. 2014; 8(3): 163–92.CrossRefGoogle ScholarPubMed
Baird, D. M., Kipling, D. The extent and significance of telomere loss with age. Ann N Y Acad Sci. 2004; 1019: 265–8.CrossRefGoogle ScholarPubMed
Bakaysa, S. L., Mucci, L. A., Slagboom, P. E., et al. Telomere length predicts survival independent of genetic influences. Aging Cell. 2007; 6(6): 769–74.CrossRefGoogle ScholarPubMed
Baker, D. J., Childs, B. G., Durik, M., et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016; 530(7589): 184–9.CrossRefGoogle ScholarPubMed
Baker, D. J., Wijshake, T., Tchkonia, T., et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011; 479(7372): 232–6.CrossRefGoogle ScholarPubMed
Ballew, B. J., Savage, S. A. Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol. 2013; 6(3): 327–37.CrossRefGoogle ScholarPubMed
Barbieri, M., Paolisso, G., Kimura, M., et al. Higher circulating levels of IGF-1 are associated with longer leukocyte telomere length in healthy subjects. Mech Ageing Dev. 2009; 130(11–12): 771–6.CrossRefGoogle ScholarPubMed
Bayne, S., Jones, M. E. E., Li, H., Liu, J.-P. Potential roles for estrogen regulation of telomerase activity in aging. Ann N Y Acad Sci. 2007; 1114: 4855.CrossRefGoogle ScholarPubMed
Bekaert, S., De Meyer, T., Rietzschel, E. R., et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell. 2007; 6(5): 639–47.CrossRefGoogle Scholar
Benetos, A., Aviv, A. Ancestry, telomere length, and atherosclerosis risk. Circ Cardiovasc Genet. 2017; 10(3): e001718.CrossRefGoogle ScholarPubMed
Benetos, A., Dalgård, C., Labat, C., et al. Sex difference in leukocyte telomere length is ablated in opposite-sex co-twins. Int J Epidemiol. 2014; 43(6): 1799–805.CrossRefGoogle ScholarPubMed
Benetos, A., Gardner, J. P., Zureik, M., et al. Short telomeres are associated with increased carotid atherosclerosis in hypertensive subjects. Hypertension. 2004; 43(2): 182–5.CrossRefGoogle ScholarPubMed
Benetos, A., Kark, J. D., Susser, E., et al. Tracking and fixed ranking of leukocyte telomere length across the adult life course. Aging Cell. 2013; 12(4): 615–21.CrossRefGoogle ScholarPubMed
Benetos, A., Kimura, M., Labat, C., et al. A model of canine leukocyte telomere dynamics. Aging Cell. 2011; 10(6): 991–5.CrossRefGoogle Scholar
Benetos, A., Okuda, K., Lajemi, M., et al. Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension. 2001; 37(2 Pt 2): 381–5.CrossRefGoogle ScholarPubMed
Bennett, M. R., Evan, G. I., Schwartz, S. M. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest. 1995; 95(5): 2266–74.CrossRefGoogle ScholarPubMed
Blackburn, E. H. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett. 2005; 579(4): 859–62.CrossRefGoogle ScholarPubMed
Blackburn, E. H., Epel, E. S., Lin, J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015; 350(6265): 1193–8.CrossRefGoogle ScholarPubMed
Blasco, M. A. Telomere length, stem cells and aging. Nat Chem Biol. 2007; 3(10): 640–9.CrossRefGoogle ScholarPubMed
Boonekamp, J. J., Simons, M. J. P., Hemerik, L., Verhulst, S. Telomere length behaves as biomarker of somatic redundancy rather than biological age. Aging Cell. 2013; 12(2): 330–2.CrossRefGoogle ScholarPubMed
Broer, L., Codd, V., Nyholt, D. R., et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet. 2013; 21(10): 1163–8.CrossRefGoogle Scholar
Brouilette, S., Singh, R. K., Thompson, J. R., Goodall, A. H., Samani, N. J. White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol. 2003; 23(5): 842–6.CrossRefGoogle ScholarPubMed
Burnett-Hartman, A. N., Fitzpatrick, A. L., Kronmal, R. A., et al. Telomere-associated polymorphisms correlate with cardiovascular disease mortality in Caucasian women: The Cardiovascular Health Study. Mech Ageing Dev. 2012; 133(5): 275–81.CrossRefGoogle ScholarPubMed
Butler, M. G., Tilburt, J., DeVries, A., et al. Comparison of chromosome telomere integrity in multiple tissues from subjects at different ages. Cancer Genet Cytogenet. 1998; 105(2): 138144.CrossRefGoogle ScholarPubMed
Cai, Z., Yan, L.-J., Ratka, A. Telomere shortening and Alzheimer's disease. NeuroMolecular Med. 2012; 15(1): 2548.CrossRefGoogle ScholarPubMed
Caini, S., Raimondi, S., Johansson, H., et al. Telomere length and the risk of cutaneous melanoma and non-melanoma skin cancer: a review of the literature and meta-analysis. J Dermatol Sci. 2015; 80(3): 168–74.CrossRefGoogle ScholarPubMed
Calado, R. T., Young, N. S. Telomere diseases. N Engl J Med. 2009; 361(24): 2353–65.CrossRefGoogle ScholarPubMed
Calado, R. T., Regal, J. A., Kleiner, D. E., et al. A spectrum of severe familial liver disorders associate with telomerase mutations. PloS One. 2009; 4(11): e7926.CrossRefGoogle ScholarPubMed
Calvert, P. A., Liew, T.-V., Gorenne, I., et al. Leukocyte telomere length is associated with high-risk plaques on virtual histology intravascular ultrasound and increased proinflammatory activity. Arterioscler Thromb Vasc Biol. 2011; 31(9): 2157–64.CrossRefGoogle ScholarPubMed
Campa, D., Mergarten, B., De Vivo, I., et al. Leukocyte telomere length in relation to pancreatic cancer risk: a prospective study. Cancer Epidemiol Biomark Prev. 2014; 23(11): 2447–54.CrossRefGoogle ScholarPubMed
Candore, G., Balistreri, C. R., Listì, F., et al. Immunogenetics, gender, and longevity. Ann N Y Acad Sci. 2006; 1089: 516–37.CrossRefGoogle ScholarPubMed
Carter, B. D., Abnet, C. C., Feskanich, D., et al. Smoking and mortality – beyond established causes. N Engl J Med. 2015; 372(7): 631–40.CrossRefGoogle ScholarPubMed
Cassidy, A., De Vivo, I., Liu, Y., et al. Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr. 2010; 91(5): 1273–80.CrossRefGoogle ScholarPubMed
Cattan, V., Mercier, N., Gardner, J. P., et al. Chronic oxidative stress induces a tissue-specific reduction in telomere length in CAST/Ei mice. Free Radic Biol Med. 2008; 44(8): 1592–8.CrossRefGoogle ScholarPubMed
Cawthon, R. M., Smith, K. R., O'Brien, E., Sivatchenko, A., Kerber, R. A. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003; 361(9355): 393–5.CrossRefGoogle ScholarPubMed
Chang, J., Wang, Y., Shao, L., et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016; 22(1): 7883.CrossRefGoogle ScholarPubMed
Chen, S., Lin, J., Matsuguchi, T., et al. Short leukocyte telomere length predicts incidence and progression of carotid atherosclerosis in American Indians: the Strong Heart Family Study. Aging. 2014; 6(5): 414–27.Google ScholarPubMed
Chen, W., Kimura, M., Kim, S., et al. Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J Gerontol A Biol Sci Med Sci. 2011; 66A(3): 312–19.CrossRefGoogle Scholar
Cherkas, L. F., Hunkin, J. L., Kato, B. S., et al. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008; 168(2): 154–8.CrossRefGoogle ScholarPubMed
Childs, B. G., Baker, D. J., Wijshake, T., Conover, C. A., Campisi, J., van Deursen, J. M. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science. 2016; 354(6311): 472–7.CrossRefGoogle ScholarPubMed
Codd, V., Nelson, C. P., Albrecht, E., et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013; 45(4): 422–7, 427 e12.CrossRefGoogle ScholarPubMed
Cogan, J. D., Kropski, J. A., Zhao, M., et al. Rare variants in RTEL1 are associated with familial interstitial pneumonia. Am J Respir Crit Care Med. 2015; 191(6): 646–55.CrossRefGoogle ScholarPubMed
Coppé, J.-P., Patil, C. K., Rodier, F., et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLOS Biol. 2008; 6(12): e301.CrossRefGoogle ScholarPubMed
d'Adda di Fagagna, F., Reaper, P. M., Clay-Farrace, L., et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003; 426(6963): 194–8.Google ScholarPubMed
D'Mello, M. J. J., Ross, S. A., Briel, M., Anand, S. S., Gerstein, H., Paré, G. Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta-analysis. Circ Cardiovasc Genet. 2015; 8(1): 8290.CrossRefGoogle ScholarPubMed
Dalgård, C., Benetos, A., Verhulst, S., et al. Leukocyte telomere length dynamics in women and men: menopause vs age effects. Int J Epidemiol. 2015; 44(5): 1688–95.CrossRefGoogle ScholarPubMed
Daniali, L., Benetos, A., Susser, E., et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun. 2013; 4: 1597.CrossRefGoogle ScholarPubMed
de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005; 19(18): 2100–10.CrossRefGoogle ScholarPubMed
de Lange, T. How telomeres solve the end-protection problem. Science. 2009; 326(5955): 948–52.CrossRefGoogle ScholarPubMed
De Meyer, T., Rietzschel, E. R., De Buyzere, M. L., et al. Paternal age at birth is an important determinant of offspring telomere length. Hum Mol Genet. 2007; 16(24): 3097–102.CrossRefGoogle ScholarPubMed
De Meyer, T., Rietzschel, E. R., De Buyzere, M. L., et al. Systemic telomere length and preclinical atherosclerosis: the Asklepios Study. Eur Heart J. 2009; 30(24): 3074–81.CrossRefGoogle ScholarPubMed
Deelen, J., Beekman, M., Codd, V., et al. Leukocyte telomere length associates with prospective mortality independent of immune-related parameters and known genetic markers. Int J Epidemiol. 2014; 43(3): 878–86.CrossRefGoogle ScholarPubMed
Dei Cas, A., Spigoni, V., Franzini, L., et al. Lower endothelial progenitor cell number, family history of cardiovascular disease and reduced HDL-cholesterol levels are associated with shorter leukocyte telomere length in healthy young adults. Nutr Metab Cardiovasc Dis. 2013; 23(3): 272–8.CrossRefGoogle ScholarPubMed
Demissie, S., Levy, D., Benjamin, E. J., et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell. 2006; 5(4): 325–30.CrossRefGoogle ScholarPubMed
Ding, H., Chen, C., Shaffer, J. R., et al. Telomere length and risk of stroke in Chinese. Stroke. 2012; 43(3): 658–63.CrossRefGoogle ScholarPubMed
Dokal, I. Inherited aplastic anaemia. Hematol J Off J Eur Haematol Assoc. 2003; 4(1): 39.Google ScholarPubMed
Dong, X., Milholland, B., Vijg, J. Evidence for a limit to human lifespan. Nature. 2016; 538(7624): 257–9.CrossRefGoogle ScholarPubMed
Driver, J. A., Djoussé, L., Logroscino, G., Gaziano, J. M., Kurth, T. Incidence of cardiovascular disease and cancer in advanced age: prospective cohort study. BMJ. 2008; 337: a2467.CrossRefGoogle ScholarPubMed
Du, M., Prescott, J., Kraft, P., et al. Physical activity, sedentary behavior, and leukocyte telomere length in women. Am J Epidemiol. 2012; 175(5): 414–22.CrossRefGoogle ScholarPubMed
Eerola, J., Kananen, L., Manninen, K., Hellström, O., Tienari, P. J., Hovatta, I. No evidence for shorter leukocyte telomere length in Parkinson's disease patients. J Gerontol A Biol Sci Med Sci. 2010; 65(11): 1181–4.Google ScholarPubMed
Entringer, S., Epel, E. S., Kumsta, R., et al. Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proc Natl Acad Sci U S A. 2011; 108(33): E513–18.CrossRefGoogle ScholarPubMed
Factor-Litvak, P., Susser, E., Kezios, K., et al. Leukocyte telomere length in newborns: implications for the role of telomeres in human disease. Pediatrics. 2016; 137(4): e20153927.CrossRefGoogle ScholarPubMed
Fedarko, N. S. The biology of aging and frailty. Clin Geriatr Med. 2011; 27(1): 2737.CrossRefGoogle ScholarPubMed
Fernández-Alvira, J. M., Fuster, V., Dorado, B., et al. Short telomere load, telomere length, and subclinical atherosclerosis: The PESA Study. J Am Coll Cardiol. 2016; 67(21): 2467–76.CrossRefGoogle ScholarPubMed
Fitzpatrick, A. L., Kronmal, R. A., Kimura, M., et al. Leukocyte telomere length and mortality in the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci. 2011; 66(4): 421–9.Google ScholarPubMed
Fogarty, P. F., Yamaguchi, H., Wiestner, A., et al. Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet. 2003; 362(9396): 1628–30.CrossRefGoogle ScholarPubMed
Fyhrquist, F., Saijonmaa, O., Strandberg, T. The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol. 2013; 10(5): 274–83.CrossRefGoogle ScholarPubMed
García-Calzón, S., Martínez-González, M. A., Razquin, C., et al. Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study. Clin Nutr Edinb Scotl. 2016; 35(6): 1399–405.Google ScholarPubMed
Gardner, J. P., Li, S., Srinivasan, S. R., et al. Rise in insulin resistance is associated with escalated telomere attrition. Circulation. 2005; 111(17): 2171–7.CrossRefGoogle ScholarPubMed
Gavrilov, L. A., Gavrilova, N. Interview with Leonid A. Gavrilov, Ph.D.and Natalia Gavrilova, Ph.D. Rejuvenation Res. 2009; 12(5): 371–4.Google ScholarPubMed
Glousker, G., Touzot, F., Revy, P., Tzfati, Y., Savage, S. A. Unraveling the pathogenesis of Hoyeraal-Hreidarsson syndrome, a complex telomere biology disorder. Br J Haematol. 2015; 170(4): 457–71.CrossRefGoogle ScholarPubMed
Greider, C. W., Blackburn, E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985; 43(2 Pt 1): 405–13.CrossRefGoogle ScholarPubMed
Griffith, J. D., Comeau, L., Rosenfield, S., et al. Mammalian telomeres end in a large duplex loop. Cell. 1999; 97(4): 503–14.CrossRefGoogle Scholar
Grodstein, F., van Oijen, M., Irizarry, M. C., et al. Shorter telomeres may mark early risk of dementia: preliminary analysis of 62 participants from the nurses’ health study. PloS One. 2008; 3(2): e1590.CrossRefGoogle Scholar
Guan, J. Z., Maeda, T., Sugano, M., et al. A percentage analysis of the telomere length in Parkinson's disease patients. J Gerontol A Biol Sci Med Sci. 2008; 63(5): 467–73.CrossRefGoogle ScholarPubMed
Guan, J.-Z., Guan, W.-P., Maeda, T., Makino, N. Effect of vitamin E administration on the elevated oxygen stress and the telomeric and subtelomeric status in Alzheimer's disease. Gerontology. 2012; 58(1): 62–9.CrossRefGoogle ScholarPubMed
Hägg, S., Zhan, Y., Karlsson, R., et al. Short telomere length is associated with impaired cognitive performance in European ancestry cohorts. Transl Psychiatry. 2017; 7(4): e1100.CrossRefGoogle ScholarPubMed
Hammadah, M., Al Mheid, I., Wilmot, K., et al. Telomere shortening, regenerative capacity, and cardiovascular outcomes. Circ Res. 2017; 120(7): 1130–8.CrossRefGoogle ScholarPubMed
Hansen, M. E. B., Hunt, S. C., Stone, R. C., et al. Shorter telomere length in Europeans than in Africans due to polygenetic adaptation. Hum Mol Genet. 2016; 25(11): 2324–30.CrossRefGoogle ScholarPubMed
Harley, C. B., Futcher, A. B., Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature. 1990; 345(6274): 458–60.CrossRefGoogle ScholarPubMed
Hashimoto, M., Asai, A., Kawagishi, H., et al. Elimination of p19ARF-expressing cells enhances pulmonary function in mice. JCI Insight. 2016; 1(12): e87732.CrossRefGoogle ScholarPubMed
Haycock, P. C., Burgess, S., Nounu, A., et al. Association between telomere length and risk of cancer and non-neoplastic diseases: A Mendelian Randomization Study. JAMA Oncol. 2017; 3(5): 636–51.CrossRefGoogle Scholar
Haycock, P. C., Heydon, E. E., Kaptoge, S., Butterworth, A. S., Thompson, A., Willeit, P. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014; 349: g4227.CrossRefGoogle ScholarPubMed
Hayflick, L. Biological aging is no longer an unsolved problem. Ann N Y Acad Sci. 2007; 1100: 113.CrossRefGoogle ScholarPubMed
Hayflick, L., Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961; 25: 585621.CrossRefGoogle ScholarPubMed
Hill, J. M., Zalos, G., Halcox, J. P. J., et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003; 348(7): 593600.CrossRefGoogle ScholarPubMed
Hjelmborg, J. B., Dalgård, C., Möller, S., et al. The heritability of leucocyte telomere length dynamics. J Med Genet. 2015a; 52(5): 297302.CrossRefGoogle ScholarPubMed
Hjelmborg, J. B., Dalgård, C., Mangino, M., et al. Paternal age and telomere length in twins: the germ stem cell selection paradigm. Aging Cell. 2015b; 14(4): 701–3.CrossRefGoogle ScholarPubMed
Hochstrasser, T., Marksteiner, J., Humpel, C. Telomere length is age-dependent and reduced in monocytes of Alzheimer patients. Exp Gerontol. 2012; 47(2): 160–3.CrossRefGoogle ScholarPubMed
Honig, L. S., Kang, M. S., Cheng, R., et al. Heritability of telomere length in a study of long-lived families. Neurobiol Aging. 2015; 36(10): 2785–90.CrossRefGoogle Scholar
Honig, L. S., Kang, M. S., Schupf, N., Lee, J. H., Mayeux, R. Association of shorter leukocyte telomere repeat length with dementia and mortality. Arch Neurol. 2012; 69(10): 1332–9.CrossRefGoogle ScholarPubMed
Houben, J. M. J., Moonen, H. J. J., van Schooten, F. J., Hageman, G. J. Telomere length assessment: biomarker of chronic oxidative stress? Free Radic Biol Med. 2008; 44(3): 235–46.CrossRefGoogle ScholarPubMed
Hovatta, I., de Mello, V. D. F., Kananen, L., et al. Leukocyte telomere length in the Finnish Diabetes Prevention Study. PloS One. 2012; 7(4): e34948.CrossRefGoogle ScholarPubMed
Hunt, S. C., Chen, W., Gardner, J. P., et al. Leukocyte telomeres are longer in African Americans than in whites: the National Heart, Lung, and Blood Institute Family Heart Study and the Bogalusa Heart Study. Aging Cell. 2008; 7(4): 451–8.CrossRefGoogle ScholarPubMed
Hunt, S. C., Kimura, M., Hopkins, P. N., et al. Leukocyte telomere length and coronary artery calcium. Am J Cardiol. 2015; 116(2): 214–18.CrossRefGoogle ScholarPubMed
Huzen, J., Peeters, W., de Boer, R. A., et al. Circulating leukocyte and carotid atherosclerotic plaque telomere length: interrelation, association with plaque characteristics, and restenosis after endarterectomy. Arterioscler Thromb Vasc Biol. 2011; 31(5): 1219–25.CrossRefGoogle ScholarPubMed
Iles, M. M., Bishop, D. T., Taylor, J. C., et al. The effect on melanoma risk of genes previously associated with telomere length. J Natl Cancer Inst. 2014; 106(10): dju267.CrossRefGoogle ScholarPubMed
Ilmonen, P., Kotrschal, A., Penn, D. J. Telomere attrition due to infection. PloS One. 2008; 3(5): e2143.CrossRefGoogle ScholarPubMed
Jaskelioff, M., Muller, F. L., Paik, J.-H., et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature. 2011; 469(7328): 102–06.CrossRefGoogle ScholarPubMed
Jeanclos, E., Schork, N. J., Kyvik, K. O., Kimura, M., Skurnick, J. H., Aviv, A. Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension. 2000; 36(2): 195200.CrossRefGoogle ScholarPubMed
Jenkins, E. C., Velinov, M. T., Ye, L., et al. Telomere shortening in T lymphocytes of older individuals with Down syndrome and dementia. Neurobiol Aging. 2006; 27(7): 941–5.CrossRefGoogle Scholar
Julin, B., Shui, I., Heaphy, C. M., et al. Circulating leukocyte telomere length and risk of overall and aggressive prostate cancer. Br J Cancer. 2015; 112(4): 769–76.CrossRefGoogle ScholarPubMed
Kark, J. D., Goldberger, N., Kimura, M., Sinnreich, R., Aviv, A. Energy intake and leukocyte telomere length in young adults. Am J Clin Nutr. 2012; 95(2): 479–87.CrossRefGoogle ScholarPubMed
Kimura, M., Hjelmborg, J. V. B., Gardner, J. P., et al. Telomere length and mortality: a study of leukocytes in elderly Danish twins. Am J Epidemiol. 2008a; 167(7): 799806.CrossRefGoogle ScholarPubMed
Kimura, M., Cherkas, L. F., Kato, B. S., et al. Offspring's leukocyte telomere length, paternal age, and telomere elongation in sperm. PLoS Genet. 2008b; 4(2): e37.CrossRefGoogle ScholarPubMed
Kurz, D. J., Kloeckener-Gruissem, B., Akhmedov, A., et al. Degenerative aortic valve stenosis, but not coronary disease, is associated with shorter telomere length in the elderly. Arterioscler Thromb Vasc Biol. 2006; 26(6): e114–17.CrossRefGoogle Scholar
Kurz, D. J., Decary, S., Hong, Y., Trivier, E., Akhmedov, A., Erusalimsky, J. D. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci. 2004; 117(Pt 11): 2417–26.CrossRefGoogle ScholarPubMed
Lee, H. W., Blasco, M. A., Gottlieb, G. J., Horner, J. W., Greider, C. W., DePinho, R. A. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998; 392(6676): 569–74.CrossRefGoogle ScholarPubMed
Lindsey, J., McGill, N. I., Lindsey, L. A., Green, D. K., Cooke, H. J. In vivo loss of telomeric repeats with age in humans. Mutat Res. 1991; 256(1): 45–8.Google ScholarPubMed
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., Kroemer, G. The hallmarks of aging. Cell. 2013; 153(6): 1194–217.CrossRefGoogle ScholarPubMed
Luciani, F., Valensin, S., Vescovini, R., et al. A stochastic model for CD8(+)T cell dynamics in human immunosenescence: implications for survival and longevity. J Theor Biol. 2001; 213(4): 587–97.CrossRefGoogle ScholarPubMed
Lukens, J. N., Van Deerlin, V., Clark, C. M., Xie, S. X., Johnson, F. B. Comparisons of telomere lengths in peripheral blood and cerebellum in Alzheimer's disease. Alzheimers Dement. 2009; 5(6): 463–9.CrossRefGoogle ScholarPubMed
Lummaa, V., Pettay, J. E., Russell, A. F. Male twins reduce fitness of female co-twins in humans. Proc Natl Acad Sci U S A. 2007; 104(26): 1091520.CrossRefGoogle ScholarPubMed
Lundberg, A. K., Jönsson, S., Stenmark, J., Kristenson, M., Jonasson, L. Stress-induced release of matrix metalloproteinase-9 in patients with coronary artery disease: the possible influence of cortisol. Psychoneuroendocrinology. 2016; 73: 117–24.CrossRefGoogle ScholarPubMed
Lynch, S. M., Major, J. M., Cawthon, R., et al. A prospective analysis of telomere length and pancreatic cancer in the alpha-tocopherol beta-carotene cancer (ATBC) prevention study. Int J Cancer. 2013; 133(11): 2672–80.Google ScholarPubMed
Lynch, S. M., Peek, M. K., Mitra, N., et al. Race, ethnicity, psychosocial factors, and telomere length in a multicenter setting. PloS One. 2016; 11(1): e0146723.CrossRefGoogle Scholar
Ma, L., Li, Y., Wang, J. Telomeres and essential hypertension. Clin Biochem. 2015; 48(16–17): 1195–9.CrossRefGoogle ScholarPubMed
Machiela, M. J., Hsiung, C. A., Shu, X.-O., et al. Genetic variants associated with longer telomere length are associated with increased lung cancer risk among never-smoking women in Asia: a report from the female lung cancer consortium in Asia. Int J Cancer. 2015; 137(2): 311–19.CrossRefGoogle Scholar
Maeda, T., Guan, J. Z., Koyanagi, M., Higuchi, Y., Makino, N. Aging-associated alteration of telomere length and subtelomeric status in female patients with Parkinson's disease. J Neurogenet. 2012; 26(2): 245–51.CrossRefGoogle ScholarPubMed
Mainous, A. G., Codd, V., Diaz, V. A., et al. Leukocyte telomere length and coronary artery calcification. Atherosclerosis. 2010; 210(1): 262–7.CrossRefGoogle ScholarPubMed
Malaquin, N., Martinez, A., Rodier, F. Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp Gerontol. 2016; 82: 3949.CrossRefGoogle ScholarPubMed
Marión, R. M., Blasco, M. A. Telomeres and telomerase in adult stem cells and pluripotent embryonic stem cells. Adv Exp Med Biol. 2010; 695: 118–31.CrossRefGoogle ScholarPubMed
Matthews, C., Gorenne, I., Scott, S., et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res. 2006; 99(2): 156–64.CrossRefGoogle ScholarPubMed
Metcalfe, N. B., Monaghan, P. Compensation for a bad start: grow now, pay later? Trends Ecol Evol. 2001; 16(5): 254–60.CrossRefGoogle ScholarPubMed
Metcalfe, N. B., Monaghan, P. Growth versus lifespan: perspectives from evolutionary ecology. Exp Gerontol. 2003; 38(9): 935–40.CrossRefGoogle ScholarPubMed
Minamino, T., Miyauchi, H., Yoshida, T., Ishida, Y., Yoshida, H., Komuro, I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation. 2002; 105(13): 1541–4.CrossRefGoogle ScholarPubMed
Mirabello, L., Huang, W.-Y., Wong, J. Y. Y., et al. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell. 2009; 8(4): 405–13.CrossRefGoogle ScholarPubMed
Monickaraj, F., Aravind, S., Gokulakrishnan, K., et al. Accelerated aging as evidenced by increased telomere shortening and mitochondrial DNA depletion in patients with type 2 diabetes. Mol Cell Biochem. 2012; 365(1–2): 343–50.CrossRefGoogle ScholarPubMed
Morrison, S. J., Kimble, J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 2006; 441(7097): 1068–74.CrossRefGoogle ScholarPubMed
Mozaffarian, D., Benjamin, E. J., Go, A. S., et al. Heart disease and stroke statistics-2016 update: A Report From the American Heart Association. Circulation. 2016; 133(4): e38360.Google ScholarPubMed
Müezzinler, A., Zaineddin, A. K., Brenner, H. A systematic review of leukocyte telomere length and age in adults. Ageing Res Rev. 2013; 12(2): 509–19.CrossRefGoogle ScholarPubMed
Nawrot, T. S., Staessen, J. A., Gardner, J. P., Aviv, A. Telomere length and possible link to X chromosome. Lancet. 2004; 363(9408): 507–10.CrossRefGoogle ScholarPubMed
Nawrot, T. S., Staessen, J. A., Holvoet, P., et al. Telomere length and its associations with oxidized-LDL, carotid artery distensibility and smoking. Front Biosci (Elite Ed). 2010; 2: 1164–8.Google ScholarPubMed
Nilsson, P. M., Tufvesson, H., Leosdottir, M., Melander, O. Telomeres and cardiovascular disease risk: an update 2013. Transl Res. 2013; 162(6): 371–80.CrossRefGoogle ScholarPubMed
Nordfjäll, K., Eliasson, M., Stegmayr, B., Lundin, S., Roos, G., Nilsson, P. M. Increased abdominal obesity, adverse psychosocial factors and shorter telomere length in subjects reporting early ageing; the MONICA Northern Sweden Study. Scand J Soc Med. 2008; 36(7): 744–52.Google ScholarPubMed
Nzietchueng, R., Elfarra, M., Nloga, J., et al. Telomere length in vascular tissues from patients with atherosclerotic disease. J Nutr Health Aging. 2011; 15(2): 153–6.CrossRefGoogle ScholarPubMed
O'Donnell, C. J., Demissie, S., Kimura, M., et al. Leukocyte telomere length and carotid artery intimal medial thickness: the Framingham Heart Study. Arterioscler Thromb Vasc Biol. 2008; 28(6): 1165–71.Google ScholarPubMed
O'Donovan, G., Lee, I.-M., Hamer, M., Stamatakis, E. Association of “Weekend Warrior” and other leisure time physical activity patterns with risks for all-cause, cardiovascular disease, and cancer mortality. JAMA Intern Med. 2017; 177(3): 335–42.Google ScholarPubMed
O'Rourke, M. F., Hashimoto, J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol. 2007; 50(1): 113.CrossRefGoogle ScholarPubMed
Okuda, K, Bardeguez, A, Gardner, JP, et al. Telomere length in the newborn. Pediatr Res. 2002; 52(3): 377–81.CrossRefGoogle ScholarPubMed
Olovnikov, AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973; 41(1): 181–90.Google ScholarPubMed
Ornish, D, Lin, J, Chan, JM, et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013; 14(11): 1112–20.CrossRefGoogle ScholarPubMed
Panayiotou, A. G., Nicolaides, A. N., Griffin, M., et al. Leukocyte telomere length is associated with measures of subclinical atherosclerosis. Atherosclerosis. 2010; 211(1): 176–81.CrossRefGoogle ScholarPubMed
Panossian, L. A., Porter, V. R., Valenzuela, H. F., et al. Telomere shortening in T cells correlates with Alzheimer's disease status. Neurobiol Aging. 2003; 24(1): 7784.CrossRefGoogle Scholar
Rafie, N., Golpour Hamedani, S., Barak, F., Safavi, S. M., Miraghajani, M. Dietary patterns, food groups and telomere length: a systematic review of current studies. Eur J Clin Nutr. 2017; 71(2): 151–8.CrossRefGoogle ScholarPubMed
Raymond, A. R., Brooksbank, R. L., Millen, A. M. E., et al. Telomere length, endothelial activation and carotid atherosclerosis in black and white African patients with rheumatoid arthritis. Clin Exp Rheumatol. 2016; 34(5): 864–71.Google ScholarPubMed
Ribeiro, D. C., Brook, A. H., Hughes, T. E., Sampson, W. J., Townsend, G. C. Intrauterine hormone effects on tooth dimensions. J Dent Res. 2013; 92(5): 425–31.CrossRefGoogle ScholarPubMed
Rizvi, S., Raza, S. T., Mahdi, F. Telomere length variations in aging and age-related diseases. Curr Aging Sci. 2015; 7(3): 161–7.CrossRefGoogle Scholar
Rode, L., Bojesen, S. E., Weischer, M., Nordestgaard, B. G. High tobacco consumption is causally associated with increased all-cause mortality in a general population sample of 55,568 individuals, but not with short telomeres: a Mendelian randomization study. Int J Epidemiol. 2014; 43(5): 1473–83.CrossRefGoogle Scholar
Rode, L., Nordestgaard, B. G., Bojesen, S. E. Peripheral blood leukocyte telomere length and mortality among 64,637 individuals from the general population. J Natl Cancer Inst. 2015; 107(6): djv074.CrossRefGoogle Scholar
Rodier, F., Campisi, J. Four faces of cellular senescence. J Cell Biol. 2011; 192(4): 547–56.CrossRefGoogle ScholarPubMed
Ross, R. Atherosclerosis is an inflammatory disease. Am Heart J. 1999; 138(5, Supplement):S419–S420.CrossRefGoogle ScholarPubMed
Rudolph, K. L., Chang, S., Lee, H. W., et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999; 96(5): 701–12.CrossRefGoogle ScholarPubMed
Saliques, S., Teyssier, J.-R., Vergely, C., et al. Circulating leukocyte telomere length and oxidative stress: a new target for statin therapy. Atherosclerosis. 2011; 219(2): 753–60.CrossRefGoogle ScholarPubMed
Salpea, K. D., Talmud, P. J., Cooper, J. A., et al. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis. 2010; 209(1): 4250.CrossRefGoogle ScholarPubMed
Samani, N. J., Boultby, R., Butler, R., Thompson, J. R., Goodall, A. H. Telomere shortening in atherosclerosis. Lancet. 2001; 358(9280): 472–3.CrossRefGoogle ScholarPubMed
Samper, E., Flores, J. M., Blasco, M. A. Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc−/− mice with short telomeres. EMBO Rep. 2001; 2(9): 800–7.CrossRefGoogle ScholarPubMed
Sanchez-Espiridion, B., Chen, M., Chang, J. Y., et al. Telomere length in peripheral blood leukocytes and lung cancer risk: a large case-control study in Caucasians. Cancer Res. 2014; 74(9): 2476–86.CrossRefGoogle Scholar
Savage, S. A., Alter, B. P. The role of telomere biology in bone marrow failure and other disorders. Mech Ageing Dev. 2008; 129(1–2): 3547.CrossRefGoogle ScholarPubMed
Savage, S. A., Gadalla, S. M., Chanock, S. J. The long and short of telomeres and cancer association studies. J Natl Cancer Inst. 2013; 105(7): 448–9.CrossRefGoogle Scholar
Savage, S. A., Giri, N., Baerlocher, G. M., Orr, N., Lansdorp, P. M., Alter, B. P. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet. 2008; 82(2): 501–9.CrossRefGoogle ScholarPubMed
Saxena, R., Bjonnes, A., Prescott, J., et al. Genome-wide association study identifies variants in Casein Kinase II (CSNK2A2) to be associated with leukocyte telomere length in a Punjabi Sikh Diabetic Cohort. Circ Cardiovasc Genet. 2014; 7(3): 287–95.CrossRefGoogle Scholar
Scheller Madrid, A., Rode, L., Nordestgaard, B. G., Bojesen, S. E. Short telomere length and ischemic heart disease: observational and genetic studies in 290 022 individuals. Clin Chem. 2016; 62(8): 1140–9.CrossRefGoogle ScholarPubMed
Schürks, M., Buring, J., Dushkes, R., Gaziano, J. M., Zee, R. Y. L., Kurth, T. Telomere length and Parkinson's disease in men: a nested case-control study. Eur J Neurol. 2014; 21(1): 93–9.CrossRefGoogle Scholar
Seluanov, A., Chen, Z., Hine, C., et al. Telomerase activity coevolves with body mass not lifespan. Aging Cell. 2007; 6(1): 4552.CrossRefGoogle Scholar
Seow, W. J., Cawthon, R. M., Purdue, M. P., et al. Telomere length in white blood cell DNA and lung cancer: a pooled analysis of three prospective cohorts. Cancer Res. 2014; 74(15): 4090–8.Google ScholarPubMed
Sharpless, N. E., DePinho, R. A. How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol. 2007; 8(9): 703–3.CrossRefGoogle ScholarPubMed
Shay, J. W., Wright, W. E. Telomerase activity in human cancer. Curr Opin Oncol. 1996; 8(1): 6671.CrossRefGoogle ScholarPubMed
Shay, J. W., Wright, W. E. Telomeres and telomerase: implications for cancer and aging. Radiat Res. 2001; 155(1 Pt 2): 188–93.CrossRefGoogle ScholarPubMed
Shay, J. W., Wright, W. E., Werbin, H. Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta. 1991; 1072(1): 17.Google ScholarPubMed
Sjögren, P., Fisher, R., Kallings, L., Svenson, U., Roos, G., Hellénius, M.-L. Stand up for health – avoiding sedentary behaviour might lengthen your telomeres: secondary outcomes from a physical activity RCT in older people. Br J Sports Med. 2014; 48(19): 1407–9.CrossRefGoogle ScholarPubMed
Smith, D. W. Cancer mortality at very old ages. Cancer. 1996; 77(7): 1367–72.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Spigoni, V., Aldigeri, R., Picconi, A., et al. Telomere length is independently associated with subclinical atherosclerosis in subjects with type 2 diabetes: a cross-sectional study. Acta Diabetol. 2016; 53(4): 661–7.CrossRefGoogle ScholarPubMed
Spyridopoulos, I., Haendeler, J., Urbich, C., et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation. 2004; 110(19): 3136–42.CrossRefGoogle ScholarPubMed
Stanley, S. E., Armanios, M. The short and long telomere syndromes: paired paradigms for molecular medicine. Curr Opin Genet Dev. 2015; 33: 19.CrossRefGoogle Scholar
Stanley, S. E., Chen, J. J. L., Podlevsky, J. D., et al. Telomerase mutations in smokers with severe emphysema. J Clin Invest. 2015; 125(2): 563–70.CrossRefGoogle ScholarPubMed
Steenstrup, T., Hjelmborg, J. V. B., Kark, J. D., Christensen, K., Aviv, A. The telomere lengthening conundrum – artifact or biology? Nucleic Acids Res. 2013; 41(13): e131.CrossRefGoogle ScholarPubMed
Steenstrup, T., Kark, J. D., Verhulst, S., et al. Telomeres and the natural lifespan limit in humans. Aging. 2017; 9(4): 1130–42.CrossRefGoogle ScholarPubMed
Stone, R. C., Horvath, K., Kark, J. D., Susser, E., Tishkoff, S. A., Avi, A. Telomere length and the cancer-atherosclerosis trade-off. PLoS Genet. 2016; 12(7): e1006144.CrossRefGoogle ScholarPubMed
Strandberg, T. E., Saijonmaa, O., Tilvis, R. S., et al. Association of telomere length in older men with mortality and midlife body mass index and smoking. J Gerontol A Biol Sci Med Sci. 2011; 66(7): 815–20.Google ScholarPubMed
Stuart, B. D., Choi, J., Zaidi, S., et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat Genet. 2015; 47(5): 512–17.CrossRefGoogle ScholarPubMed
Swiers, G., Speck, N. A., de Bruijn, M. F. T. R. Visualizing blood cell emergence from aortic endothelium. Cell Stem Cell. 2010; 6(4): 289–90.CrossRefGoogle ScholarPubMed
Tapp, A. L., Maybery, M. T., Whitehouse, A. J. O. Evaluating the twin testosterone transfer hypothesis: a review of the empirical evidence. Horm Behav. 2011; 60(5): 713–22.CrossRefGoogle ScholarPubMed
Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J., Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013; 123(3): 966–72.CrossRefGoogle ScholarPubMed
Tentolouris, N., Nzietchueng, R., Cattan, V., et al. White blood cells telomere length is shorter in males with type 2 diabetes and microalbuminuria. Diabetes Care. 2007; 30(11): 2909–15.CrossRefGoogle ScholarPubMed
Testa, R., Olivieri, F., Sirolla, C., et al. Leukocyte telomere length is associated with complications of type 2 diabetes mellitus. Diabet Med. 2011; 28(11): 1388–94.CrossRefGoogle ScholarPubMed
Thomas, P., O’ Callaghan, N. J., Fenech, M. Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer's disease. Mech Ageing Dev. 2008; 129(4): 183–90.CrossRefGoogle ScholarPubMed
Toupance, S., Labat, C., Temmar, M., et al. Short telomeres, but not telomere attrition rates, are associated with carotid atherosclerosis. Hypertension 2017; 70(2): 420–5.CrossRefGoogle Scholar
Tzanetakou, I. P., Mikhailidis, D. P., Perrea, D.N. Nutrition during pregnancy and the effect of carbohydrates on the offspring's metabolic profile: in search of the “Perfect Maternal Diet”. Open Cardiovasc Med J. 2011; 5: 103–9.CrossRefGoogle Scholar
Unryn, B. M., Cook, L. S., Riabowol, K. T. Paternal age is positively linked to telomere length of children. Aging Cell. 2005; 4(2): 97101.CrossRefGoogle ScholarPubMed
Uryga, A. K., Bennett, M. R. Ageing induced vascular smooth muscle cell senescence in atherosclerosis. J Physiol. 2016; 594(8): 2115–24.CrossRefGoogle ScholarPubMed
Valdes, A. M., Andrew, T., Gardner, J. P., et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005; 366(9486): 662–4.CrossRefGoogle ScholarPubMed
van der Harst, P., van der Steege, G., de Boer, R. A., et al. Telomere length of circulating leukocytes is decreased in patients with chronic heart failure. J Am Coll Cardiol. 2007; 49(13): 1459–64.CrossRefGoogle ScholarPubMed
van Deursen, J. M. The role of senescent cells in ageing. Nature. 2014; 509(7501): 439–46.CrossRefGoogle ScholarPubMed
Vasan, R. S., Demissie, S., Kimura, M., et al. Association of leukocyte telomere length with circulating biomarkers of the renin-angiotensin-aldosterone system: the Framingham Heart Study. Circulation. 2008; 117(9): 1138–44.CrossRefGoogle ScholarPubMed
Vemparala, K., Roy, A., Bahl, V. K., et al. Early accelerated senescence of circulating endothelial progenitor cells in premature coronary artery disease patients in a developing country – a case control study. BMC Cardiovasc Disord. 2013; 13: 104.CrossRefGoogle Scholar
von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002; 27(7): 339–44.CrossRefGoogle ScholarPubMed
von Zglinicki, T., Serra, V., Lorenz, M., et al. Short telomeres in patients with vascular dementia: an indicator of low antioxidative capacity and a possible risk factor? Lab Invest. 2000; 80(11): 1739–47.CrossRefGoogle ScholarPubMed
Vulliamy, T., Marrone, A., Dokal, I., Mason, P. J. Association between aplastic anaemia and mutations in telomerase RNA. Lancet. 2002; 359(9324): 2168–70.CrossRefGoogle ScholarPubMed
Vuoksimaa, E., Eriksson, C. J. P., Pulkkinen, L., Rose, R. J., Kaprio, J. Decreased prevalence of left-handedness among females with male co-twins: evidence suggesting prenatal testosterone transfer in humans? Psychoneuroendocrinology. 2010; 35(10): 1462–72.CrossRefGoogle ScholarPubMed
Walsh, K. M., Codd, V., Rice, T., et al. Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk. Oncotarget. 2015; 6(40): 4246877.CrossRefGoogle ScholarPubMed
Walsh, K. M., Whitehead, T. P., de Smith, A. J., et al. Common genetic variants associated with telomere length confer risk for neuroblastoma and other childhood cancers. Carcinogenesis. 2016; 37(6): 576–82.CrossRefGoogle ScholarPubMed
Wang, H., Chen, H., Gao, X., et al. Telomere length and risk of Parkinson's disease. Mov Disord. 2008; 23(2): 302–5.CrossRefGoogle ScholarPubMed
Wang, J., Uryga, A. K., Reinhold, J., et al. Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability. Circulation. 2015; 132(20): 1909–19.Google ScholarPubMed
Wang, Y.-Y., Chen, A.-F., Wang, H.-Z., Xie, L.-Y., Sui, K.-X., Zhang, Q.-Y. Association of shorter mean telomere length with large artery stiffness in patients with coronary heart disease. Aging Male. 2011; 14(1): 2732.CrossRefGoogle ScholarPubMed
Watfa, G., Dragonas, C., Brosche, T., et al. Study of telomere length and different markers of oxidative stress in patients with Parkinson's disease. J Nutr Health Aging. 2011; 15(4): 277–81.CrossRefGoogle ScholarPubMed
Weischer, M., Bojesen, S. E., Nordestgaard, B. G. Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4,576 general population individuals with repeat measurements 10 years apart. PLoS Genet. 2014; 10(3): e1004191.CrossRefGoogle Scholar
Willeit, P., Raschenberger, J., Heydon, E. E., et al. Leucocyte telomere length and risk of type 2 diabetes mellitus: new prospective cohort study and literature-based meta-analysis. PloS One. 2014; 9(11): e112483.CrossRefGoogle ScholarPubMed
Willeit, P., Willeit, J., Brandstätter, A., et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2010; 30(8): 1649–56.CrossRefGoogle ScholarPubMed
Xia, L., Wang, X. X., Hu, X. S., et al. Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms. Br J Pharmacol. 2008; 155(3): 387–94.CrossRefGoogle ScholarPubMed
Yamaguchi, H., Baerlocher, G. M., Lansdorp, P. M., et al. Mutations of the human telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic syndrome. Blood. 2003; 102(3): 916–18.CrossRefGoogle ScholarPubMed
Yamaguchi, H., Calado, R. T., Ly, H., et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 2005; 352(14): 1413–24.CrossRefGoogle ScholarPubMed
Yeh, J.-K., Wang, C.-Y. Telomeres and telomerase in cardiovascular diseases. Genes. 2016; 7(9): E58.CrossRefGoogle ScholarPubMed
Youngren, K., Jeanclos, E., Aviv, H., et al. Synchrony in telomere length of the human fetus. Hum Genet. 1998; 102(6): 640–3.CrossRefGoogle ScholarPubMed
Zee, R. Y. L., Ridker, P. M., Chasman, D. I. Genetic variants of 11 telomere-pathway gene loci and the risk of incident type 2 diabetes mellitus: the Women's Genome Health Study. Atherosclerosis. 2011; 218(1): 144–6.CrossRefGoogle ScholarPubMed
Zekry, D., Herrmann, F. R., Irminger-Finger, I., et al. Telomere length and ApoE polymorphism in mild cognitive impairment, degenerative and vascular dementia. J Neurol Sci. 2010; 299(1–2): 108–11.CrossRefGoogle ScholarPubMed
Zhan, Y., Song, C., Karlsson, R., et al. Telomere length shortening and Alzheimer disease – A Mendelian Randomization Study. JAMA Neurol. 2015; 72(10): 1202–3.CrossRefGoogle ScholarPubMed
Zhang, C., Doherty, J. A., Burgess, S., et al. Genetic determinants of telomere length and risk of common cancers: a Mendelian randomization study. Hum Mol Genet. 2015; 24(18): 5356–66.CrossRefGoogle ScholarPubMed
Zhang, W., Chen, Y., Wang, Y., et al. Short telomere length in blood leucocytes contributes to the presence of atherothrombotic stroke and haemorrhagic stroke and risk of post-stroke death. Clin Sci. 2013; 125(1): 2736.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×