Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T10:40:55.641Z Has data issue: false hasContentIssue false

3 - The Role of Genetics in the Development of Prosocial Behavior

from Part I - Development of Prosociality

Published online by Cambridge University Press:  25 May 2023

Tina Malti
Affiliation:
University of Toronto
Maayan Davidov
Affiliation:
The Hebrew University of Jerusalem
Get access

Summary

We review findings regarding genetic effects on prosociality, while considering the multifaceted nature of this trait. We begin with reviewing quantitative genetic studies, particularly twin studies, which attempt to estimate the overall genetic contributions to prosociality and its components. We also discuss molecular genetic designs, while considering the methodological shift of focus from the study of candidate genes (i.e., specific genes that relate to phenotype) into genome-wide association studies (which study many polymorphisms across the genome). We then address the complex interplay of environmental and genetic effects, and present findings of gene-environment correlations and interactions. Throughout this chapter we also present findings regarding genetic effects in relevant constructs such as the personality trait of agreeableness and empathy, which could suggest underlying motivational mechanisms for prosocial behavior. We then present a developmental perspective on the topic, and conclude with discussing possible implications of this line of research and future directions.

Type
Chapter
Information
The Cambridge Handbook of Prosociality
Development, Mechanisms, Promotion
, pp. 37 - 60
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramson, L., Uzefovsky, F., Toccaceli, V., & Knafo-Noam, A. (2020). The genetic and environmental origins of emotional and cognitive empathy: Review and meta-analyses of twin studies. Neuroscience & Biobehavioral Reviews, 114, 113133.CrossRefGoogle ScholarPubMed
Amin, N., Hottenga, J. J., Hansell, N. K., Janssens, A. C. J. W., De Moor, M. H. M., Madden, P. A. F., Zorkoltseva, I. V., Penninx, B. W., Terracciano, A., Uda, M., Tanaka, T., Esko, , T., Realo, , A., Ferrucci, L., Luciano, M., Davies, G., Metspalu, A., Abecasis, G. R., Deary, I. J., … & Van Duijn, C. M. (2012). Refining genome-wide linkage intervals using a meta-analysis of genome-wide association studies identifies loci influencing personality dimensions. European Journal of Human Genetics, 21(8), 876882. https://doi.org/10.1038/ejhg.2012.263CrossRefGoogle ScholarPubMed
Ando, J., & Kawamoto, T. (2021). Genetic and environmental structure of altruism characterized by recipients in relation to personality. Medicina, 57(6), 593. https://doi.org/10.3390/MEDICINA57060593Google Scholar
Ando, J., Suzuki, A., Yamagata, S., Kijima, N., Maekawa, H., Ono, Y., & Jang, K. L. (2006). Genetic and environmental structure of Cloninger’s Temperament and Character dimensions. Journal of Personality Disorders, 18(4), 379393. https://doi.org/10.1521/PEDI.2004.18.4.379Google Scholar
Avinun, R., Ebstein, R. P., & Knafo, A. (2012). Human maternal behaviour is associated with arginine vasopressin receptor 1A gene. Biology Letters, 8(5), 894896.Google Scholar
Avinun, R., Israel, S., Shalev, I., Gritsenko, I., Bornstein, G., Ebstein, R. P., & Knafo, A. (2011). AVPR1A variant associated with preschoolers’ lower altruistic behavior. PLoS ONE, 6(9), e25274. https://doi.org/10.1371/JOURNAL.PONE.0025274CrossRefGoogle ScholarPubMed
Avinun, R., & Knafo, A. (2014). Parenting as a reaction evoked by children’s genotype: A meta-analysis of children-as-twins studies. Personality and Social Psychology Review, 18(1), 87102. https://doi.org/10.1177/1088868313498308Google Scholar
Bachner-Melman, R., Gritsenko, I., Nemanov, L., Zohar, A. H., Dina, C., & Ebstein, R. P. (2005). Dopaminergic polymorphisms associated with self-report measures of human altruism: A fresh phenotype for the dopamine D4 receptor. Molecular Psychiatry, 10(4), 333335. https://doi.org/10.1038/sj.mp.4001635Google Scholar
Bakermans-Kranenburg, M. J., & Van Ijzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Development and Psychopathology, 23(1), 3952.Google Scholar
Beam, C. R., & Turkheimer, E. (2013). Phenotype–environment correlations in longitudinal twin models. Development and Psychopathology, 25(1), 716. https://doi.org/10.1017/S0954579412000867Google Scholar
Bickart, K., Napolioni, V., Khan, R., Richiardi, J., & Greicius, M. (2019). Intrinsic amygdala connectivity as an endophenotype for social behavior: A novel SNP affecting CSMD1 increases amygdala connectivity and prosocial behavior in a GWAS meta-analysis. Neurology, 92(15 Supplement).Google Scholar
Boivin, M., Brendgen, M., Dionne, G., Ouellet-Morin, I., Dubois, L., Pérusse, D., Robaey, P., Tremblay, R. E., & Vitaro, F. (2019). The Quebec Newborn Twin Study at 21. Twin Research and Human Genetics, 22(6), 475481. https://doi.org/10.1017/THG.2019.74Google Scholar
Boyle, E. A., Li, Y. I., & Pritchard, J. K. (2017). An expanded view of complex traits: From polygenic to omnigenic. Cell, 169(7), 11771186. https://doi.org/10.1016/J.CELL.2017.05.038Google Scholar
Brown, S. L., & Brown, R. M. (2015). Connecting prosocial behavior to improved physical health: Contributions from the neurobiology of parenting. Neuroscience & Biobehavioral Reviews, 55, 117. https://doi.org/10.1016/J.NEUBIOREV.2015.04.004Google Scholar
Brownell, C. A. (2016). Prosocial behavior in infancy: The role of socialization. Child Development Perspectives, 10(4), 222227. https://doi.org/10.1111/CDEP.12189Google Scholar
Caprara, G. V., Alessandri, G., di Giunta, L., Panerai, L., & Eisenberg, N. (2010). The contribution of agreeableness and self-efficacy beliefs to prosociality. European Journal of Personality, 24(1), 3655. https://doi.org/10.1002/PER.739CrossRefGoogle Scholar
Caputi, M., Lecce, S., Pagnin, A., & Banerjee, R. (2011). Longitudinal effects of theory of mind on later peer relations: The role of prosocial behavior. Developmental Psychology, 48(1), 257. https://doi.org/10.1037/A0025402Google Scholar
Carlo, G., McGinley, M., Hayes, R., Batenhorst, C., & Wilkinson, J. (2007). Parenting styles or practices? Parenting, sympathy, and prosocial behaviors among adolescents. Journal of Genetic Psychology, 168(2), 147176. https://doi.org/10.3200/GNTP.168.2.147-176Google Scholar
Cavalli, G., & Heard, E. (2019). Advances in epigenetics link genetics to the environment and disease. Nature, 571(7766), 489499. https://doi.org/10.1038/s41586-019-1411-0Google Scholar
Chopik, W. J., & Kitayama, S. (2018). Personality change across the life span: Insights from a cross-cultural, longitudinal study. Journal of Personality, 86, 508521. https://doi.org/10.1111/jopy.12332CrossRefGoogle ScholarPubMed
Christ, C. C., Carlo, G., & Stoltenberg, S. F. (2016). Oxytocin receptor (OXTR) single nucleotide polymorphisms indirectly predict prosocial behavior through perspective taking and empathic concern. Journal of Personality, 84(2), 204213. https://doi.org/10.1111/jopy.12152Google Scholar
Crockett, M. J., Clark, L., Hauser, M. D., & Robbins, T. W. (2010). Serotonin selectively influences moral judgment and behavior through effects on harm aversion. Proceedings of the National Academy of Sciences of the United States of America, 107(40), 1743317438. https://doi.org/10.1073/PNAS.1009396107Google Scholar
Dahl, A., Gross, R. L., & Siefert, C. (2020). Young children’s judgments and reasoning about prosocial acts: Impermissible, suberogatory, obligatory, or supererogatory? Cognitive Development, 55, 100908. https://doi.org/10.1016/J.COGDEV.2020.100908Google Scholar
Davidov, M., Knafo-Noam, A., Serbin, L. A., & Moss, E. (2015). The influential child: How children affect their environment and influence their own risk and resilience. Development and Psychopathology, 27(4, Pt. 1), 947951.Google Scholar
Davidov, M., Zahn-Waxler, C., Roth-Hanania, R., & Knafo, A. (2013). Concern for others in the first year of life: Theory, evidence, and avenues for research. Child Development Perspectives. https://doi.org/10.1111/cdep.12028Google Scholar
De Moor, M. H. M., Costa, P. T., Terracciano, A., Krueger, R. F., De Geus, E. J. C., Toshiko, T., Penninx, B. W. J. H., Esko, T., Madden, P. A. F., Derringer, , J., Amin, N., Willemsen, G., Hottenga, J. J., Distel, M. A., Uda, M., Sanna, S., Spinhoven, P., Hartman, C. A., Sullivan, P., … & Boomsma, D. I. (2010). Meta-analysis of genome-wide association studies for personality. Molecular Psychiatry, 17(3), 337349. https://doi.org/10.1038/mp.2010.128Google Scholar
Deater-Deckard, K., Dunn, J., O’Connor, T. G., Davies, L., & Golding, J. (2008). Using the stepfamily genetic design to examine gene-environment processes in child and family functioning. Marriage and Family Review, 33(2–3), 131155. https://doi.org/10.1300/J002V33N02_02Google Scholar
Deyoung, C. G., Weisberg, Y. J., Quilty, L. C., & Peterson, J. B. (2013). Unifying the aspects of the Big Five, the interpersonal circumplex, and trait affiliation. Journal of Personality, 81(5), 465475. https://doi.org/10.1111/JOPY.12020Google Scholar
Diesendruck, G., & Benozio, A. (2012). Prosocial behaviour towards ingroup and outgroup members. In Tremblay, R. E., Boivin, M., & Peters, R. D. (Eds.), Encyclopedia on Early Childhood Development [online]. Centre of Excellence for Early Childhood Development (CEECD), Université Laval and Université de Montréal..Google Scholar
DiLalla, L. F., Bersted, K., & John, S. G. (2015). Evidence of reactive gene-environment correlation in preschoolers’ prosocial play with unfamiliar peers. Developmental Psychology, 51(10), 1464.Google Scholar
DiLalla, L. F., Elam, K. K., & Smolen, A. (2009). Genetic and gene–environment interaction effects on preschoolers’ social behaviors. Developmental Psychobiology, 51(6), 451464. https://doi.org/10.1002/DEV.20384Google Scholar
Dilalla, L. F., & Jamnik, M. R. (2019). The Southern Illinois Twins/Triplets and Siblings Study (SITSS): A longitudinal study of early child development. Twin Research and Human Genetics, 22(6), 779782. https://doi.org/10.1017/THG.2019.48Google Scholar
Docherty, A. R., Moscati, A., Peterson, R., Edwards, A. C., Adkins, D. E., Bacanu, S. A., Bigdeli, T. B., Webb, B. T., Flint, J., & Kendler, K. S. (2016). SNP-based heritability estimates of the personality dimensions and polygenic prediction of both neuroticism and major depression: Findings from CONVERGE. Translational Psychiatry, 6(10), e926e926. https://doi.org/10.1038/tp.2016.177Google Scholar
Eisenberg, N., Spinrad, T. L., & Knafo-Noam, A. (2015). Prosocial development. In Lamb, M. E. & Coll, C. G. (Eds.), Handbook of child psychology and developmental science, Vol. 3: Socioemotional processes (pp. 610656). Wiley.Google Scholar
Fehr, E., Glätzle-Rützler, D., & Sutter, M. (2013). The development of egalitarianism, altruism, spite and parochialism in childhood and adolescence. European Economic Review, 64, 369383. https://doi.org/10.1016/J.EUROECOREV.2013.09.006Google Scholar
Feldman, R., Monakhov, M., Pratt, M., & Ebstein, R. P. (2016). Oxytocin pathway genes: Evolutionary ancient system impacting on human affiliation, sociality, and psychopathology. Biological Psychiatry, 79(3), 174184. https://doi.org/10.1016/J.BIOPSYCH.2015.08.008Google Scholar
Frick, P. J., Ray, J. V., Thornton, L. C., & Kahn, R. E. (2014). Annual research review: A developmental psychopathology approach to understanding callous-unemotional traits in children and adolescents with serious conduct problems. Journal of Child Psychology and Psychiatry, 55(6), 532548. https://doi.org/10.1111/JCPP.12152Google Scholar
Fu, X., Padilla-Walker, L. M., & Brown, M. N. (2017). Longitudinal relations between adolescents’ self-esteem and prosocial behavior toward strangers, friends and family. Journal of Adolescence, 57, 9098. https://doi.org/10.1016/J.ADOLESCENCE.2017.04.002CrossRefGoogle ScholarPubMed
Gregory, A. M., Light-Häusermann, J. H., Rijsdijk, F., & Eley, T. C. (2009). Behavioral genetic analyses of prosocial behavior in adolescents. Developmental Science, 12(1), 165174. https://doi.org/10.1111/J.1467-7687.2008.00739.XCrossRefGoogle ScholarPubMed
Gregory, A. M., Rijsdijk, F. V., Lau, J. Y. F., Dahl, R. E., & Eley, T. C. (2009). The direction of longitudinal associations between sleep problems and depression symptoms: A study of twins aged 8 and 10 years. Sleep, 32(2), 189199. https://doi.org/10.5665/SLEEP/32.2.189Google Scholar
Hamlin, J. K. (2015). The case for social evaluation in preverbal infants: Gazing toward one’s goal drives infants’ preferences for Helpers over Hinderers in the hill paradigm. Frontiers in Psychology, 5, 1563.CrossRefGoogle ScholarPubMed
Hastings, P. D., Zahn-Waxler, C., Robinson, J., Usher, B., & Bridges, D. (2000). The development of concern for others in children with behavior problems. Developmental Psychology, 36(5), 531.Google Scholar
Haworth, C. M. A., Wright, M. J., Luciano, M., Martin, N. G., De Geus, E. J. C., Van Beijsterveldt, C. E. M., Bartels, M., Posthuma, D., Boomsma, D. I., Davis, O. S. P., Kovas, Y., Corley, R. P., Defries, J. C., Hewitt, J. K., Olson, R. K., Rhea, S. A., Wadsworth, S. J., Iacono, W. G., McGue, M., … & Plomin, R. (2009). The heritability of general cognitive ability increases linearly from childhood to young adulthood. Molecular Psychiatry, 15(11), 11121120. https://doi.org/10.1038/mp.2009.55Google Scholar
Haworth, Claire M. A., Carnell, S., Meaburn, E. L., Davis, O. S. P., Plomin, R., & Wardle, J. (2008). Increasing heritability of BMI and stronger associations with the FTO gene over childhood. Obesity, 16(12), 26632668. https://doi.org/10.1038/OBY.2008.434Google Scholar
Ho, S. M., Johnson, A., Tarapore, P., Janakiram, V., Zhang, X., & Leung, Y. K. (2012). Environmental epigenetics and its implication on disease risk and health outcomes. ILAR Journal/National Research Council, Institute of Laboratory Animal Resources, 53(3–4), 289305. https://doi.org/10.1093/ILAR.53.3-4.289/2/ILAR-53-289FIG1.GIFGoogle Scholar
Hui, B. P. H., Ng, J. C. K., Berzaghi, E., Cunningham-Amos, L. A., & Kogan, A. (2020). Rewards of kindness? A meta-analysis of the link between prosociality and well-being. Psychological Bulletin, 146(12), 10841116. https://doi.org/10.1037/BUL0000298Google Scholar
Hur, Y. M. (2020). Relationships between cognitive abilities and prosocial behavior are entirely explained by shared genetic influences: A Nigerian twin study. Intelligence, 82, 101483. https://doi.org/10.1016/J.INTELL.2020.101483Google Scholar
Hur, Y. M., Jeong, H. U., Kang, M. C., Ajose, F., Kim, J. W., Beck, J. J., Hottenga, J. J., Mbarek, H., Finnicum, C. T., Ehli, E. A., Martin, N. G., De Geus, E. J., Boomsma, D. I., Davies, G. E., & Bates, T. (2019). The Nigerian Twin and Sibling Registry: An update. Twin Research and Human Genetics, 22(6), 637640. https://doi.org/10.1017/THG.2019.110Google Scholar
Hur, Y. M., & Rushton, J. P. (2007). Genetic and environmental contributions to prosocial behaviour in 2- to 9-year-old South Korean twins. Biology Letters, 3(6), 664666. https://doi.org/10.1098/RSBL.2007.0365Google Scholar
Hur, Y. M., Taylor, J., Jeong, H. U., Park, M. S., & Haberstick, B. C. (2017). Perceived family cohesion moderates environmental influences on prosocial behavior in Nigerian adolescent twins. Twin Research and Human Genetics, 20(3), 226235. https://doi.org/10.1017/thg.2017.15Google Scholar
Israel, S., Hasenfratz, L., & Knafo-Noam, A. (2015). The genetics of morality and prosociality. Current Opinion in Psychology, 6, 5559. https://doi.org/10.1016/J.COPSYC.2015.03.027CrossRefGoogle Scholar
Jenkins, J. M., McGowan, P., & Knafo-Noam, A. (2016). Parent–offspring transaction: Mechanisms and the value of within family designs. Hormones and Behavior, 77, 5361. https://doi.org/10.1016/J.YHBEH.2015.06.018Google Scholar
Jennings, P. A., & Greenberg, M. T. (2009). The prosocial classroom: Teacher social and emotional competence in relation to student and classroom outcomes. Review of Educational Research, 79(1), 491525. https://doi.org/10.3102/0034654308325693Google Scholar
Jiang, Y., Bachner-Melman, R., Chew, S. H., & Ebstein, R. P. (2015). Dopamine D4 receptor gene and religious affiliation correlate with dictator game altruism in males and not females: Evidence for gender-sensitive gene × culture interaction. Frontiers in Neuroscience, 9(SEP), 338. https://doi.org/10.3389/FNINS.2015.00338/BIBTEXGoogle Scholar
Jones, D. E., Greenberg, M., & Crowley, M. (2015). Early social-emotional functioning and public health: The relationship between kindergarten social competence and future wellness. American Journal of Public Health, 105(11), 22832290. https://doi.org/10.2105/AJPH.2015.302630Google Scholar
Kandler, C., Bratko, D., Butković, A., Hlupić, T. V., Tybur, J. M., Wesseldijk, L. W., … & Lewis, G. J. (2021). How genetic and environmental variance in personality traits shift across the life span: Evidence from a cross-national twin study. Journal of Personality and Social Psychology, 121(5), 1079.Google Scholar
Kerr, M. H., Beck, K., Downs Shattuck, T., Kattar, C., & Uriburu, D. (2003). Family involvement, problem and prosocial behavior outcomes of Latino youth. American Journal of Health Behavior, 27(1), S55–S65.Google Scholar
Kidron, Y., & Fleischman, S. (2006). Promoting adolescents’ prosocial behavior. Educational Leadership, 63(7), 9091.Google Scholar
Kim, H. N., Roh, S. J., Kim, H. I., Cho, H. H., Cho, N. H., Shin, C., … & Kim, H. L. (2014, June). A genome-wide association study of agreeableness suggests a novel association in the NAV2 gene in Korean women. Poster presented at the European Human Genetics Conference, Milan, Italy. https://hdl.handle.net/10371/93539Google Scholar
Knafo, Ariel, & Israel, S. (2010). Genetic and environmental influences on prosocial behavior. In Mikulincer, M. & Shaver, P. R. (Eds.), Prosocial motives, emotions, and behavior: The better angels of our nature (pp. 149167). American Psychological Association. https://doi.org/10.1037/12061-008Google Scholar
Knafo, Ariel, Israel, S., & Ebstein, R. P. (2011). Heritability of children’s prosocial behavior and differential susceptibility to parenting by variation in the dopamine receptor D4 gene. Development and Psychopathology, 23(1), 5367. https://doi.org/10.1017/S0954579410000647Google Scholar
Knafo, Ariel, & Jaffee, S. R. (2013). Gene-environment correlation in developmental psychopathology. Development and Psychopathology, 25(1), 16. https://doi.org/10.1017/S0954579412000855CrossRefGoogle ScholarPubMed
Knafo, Ariel, & Plomin, R. (2006). Prosocial behavior from early to middle childhood: Genetic and environmental influences on stability and change. Developmental Psychology, 42(5), 771. https://doi.org/10.1037/0012-1649.42.5.771Google Scholar
Knafo, Ariel, & Spinath, F. M. (2011). Genetic and environmental influences on girls’ and boys’ gender-typed and gender-neutral values. Developmental Psychology, 47(3), 726731. https://doi.org/10.1037/a0021910Google Scholar
Knafo, Ariel, Steinberg, T., & Goldner, I. (2011). Children’s low affective perspective-taking ability is associated with low self-initiated pro-sociality. Emotion, 11(1), 194198. https://doi.org/10.1037/A0021240Google Scholar
Knafo, A., Zahn-Waxler, C., Van Hulle, C., Robinson, J. L., & Rhee, S. H. (2008). The developmental origins of a disposition toward empathy: Genetic and environmental contributions. Emotion, 8(6). https://doi.org/10.1037/a0014179Google Scholar
Knafo-Noam, A., Uzefovsky, F., Israel, S., Davidov, M., & Zahn-Waxler, C. (2015). The prosocial personality and its facets: Genetic and environmental architecture of mother-reported behavior of 7-year-old twins. Frontiers in Psychology, 6, 112.Google Scholar
Knafo-Noam, A., Vertsberger, D., & Israel, S. (2018). Genetic and environmental contributions to children’s prosocial behavior: Brief review and new evidence from a reanalysis of experimental twin data. Current Opinion in Psychology, 20, 6065). https://doi.org/10.1016/j.copsyc.2017.08.013Google Scholar
Kuczynski, L. (Ed.). (2002). Handbook of dynamics in parent-child relations. Sage Publications.Google Scholar
Laible, D., Carlo, G., Murphy, T., Augustine, M., & Roesch, S. (2014). Predicting children’s prosocial and co-operative behavior from their temperamental profiles: A person-centered approach. Social Development, 23(4), 734752. https://doi.org/10.1111/SODE.12072Google Scholar
Leerkes, E. M., Su, J., Calkins, S., Henrich, V. C., & Smolen, A. (2017). Variation in mothers’ arginine vasopressin receptor 1a and dopamine receptor D4 genes predicts maternal sensitivity via social cognition. Genes, Brain and Behavior, 16, 233240. https://doi.org/10.1111/gbb.12326Google Scholar
Luo, M., Meehan, A. J., Walton, E., Röder, S., Herberth, G., Zenclussen, A. C., Cosín-Tomás, M., Sunyer, J., Mulder, R. H., Cortes Hidalgo, A. P., Bakermans-Kranenburg, M. J., Felix, J. F., Relton, C., Suderman, M., Pappa, I., Kok, R., Tiemeier, H., van IJzendoorn, M. H., Barker, E. D., & Cecil, C. A. M. (2021). Neonatal DNA methylation and childhood low prosocial behavior: An epigenome-wide association meta-analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 186(4), 228241. https://doi.org/10.1002/AJMG.B.32862Google Scholar
MacDonald, K., & MacDonald, T. M. (2010). The peptide that binds: A systematic review of oxytocin and its prosocial effects in humans. Harvard Review of Psychiatry, 18(1), 121. https://doi.org/10.3109/10673220903523615Google Scholar
Markovitch, N., Kirkpatrick, R. M., & Knafo-Noam, A. (2021). Are different individuals sensitive to different environments? Individual differences in sensitivity to the effects of the parent, peer and school environment on externalizing behavior and its genetic and environmental etiology. Behavior Genetics, 51(5), 492511.Google Scholar
Markovitch, N., & Knafo‐Noam, A. (2021). Sensitivity, but to which environment? Individual differences in sensitivity to parents and peers show domain‐specific patterns and a negative genetic correlation. Developmental Science, 24(6), e13136.Google Scholar
Marsh, A. A. (2019). The caring continuum: Evolved hormonal and proximal mechanisms explain prosocial and antisocial extremes. Annual Review of Psychology, 70, 347371. https://doi.org/10.1146/ANNUREV-PSYCH-010418-103010Google Scholar
Marsh, A. A., Crowe, S. L., Yu, H. H., Gorodetsky, E. K., Goldman, D., & Blair, R. J. R. (2011). Serotonin transporter genotype (5-HTTLPR) predicts utilitarian moral judgments. PLoS ONE, 6(10), e25148. https://doi.org/10.1371/JOURNAL.PONE.0025148Google Scholar
Marsh, N., Marsh, A. A., Lee, M. R., & Hurlemann, R. (2021). Oxytocin and the neurobiology of prosocial behavior. Neuroscientist, 27(6), 604619. https://doi.org/10.1177/1073858420960111Google Scholar
Maud, C., Ryan, J., McIntosh, J. E., & Olsson, C. A. (2018). The role of oxytocin receptor gene (OXTR) DNA methylation (DNAm) in human social and emotional functioning: A systematic narrative review. BMC Psychiatry, 18(1), 113. https://doi.org/10.1186/S12888-018-1740-9/FIGURES/2CrossRefGoogle ScholarPubMed
McCrae, R. R., & Costa, P. T. (1999). A five-factor theory of personality. In Pervin, L. A. & John, O. P. (Eds.), Handbook of personality: Theory and research (pp. 139153). New York: Guilford Press.Google Scholar
McGowan, P. O., & Szyf, M. (2010). The epigenetics of social adversity in early life: Implications for mental health outcomes. Neurobiology of Disease, 39(1), 6672. https://doi.org/10.1016/J.NBD.2009.12.026Google Scholar
McNeill, E. M., Roos, K. P., Moechars, D., & Clagett-Dame, M. (2010). Nav2 is necessary for cranial nerve development and blood pressure regulation. Neural Development, 5(1), 114. https://doi.org/10.1186/1749-8104-5-6/TABLES/4Google Scholar
Meek, S. E. (2013). Gene-environment interplay and prosocial behavior: an analysis of parent-child relationships [PhD dissertation]. Arizona State University.Google Scholar
Midlarsky, E., Kahana, E., & Belser, A. (2015). Prosocial behavior in late life. In Schroeder, D. A. & Graziano, W. G. (Eds.), The Oxford handbook of prosocial behavior (pp. 415432). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195399813.013.030Google Scholar
Mileva-Seitz, V. R., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2016). Genetic mechanisms of parenting. Hormones and Behavior, 77, 211223. https://doi.org/10.1016/J.YHBEH.2015.06.003Google Scholar
Moore, L. D., Le, T., & Fan, G. (2012). DNA methylation and its basic function. Neuropsychopharmacology 38(1), 2338. https://doi.org/10.1038/npp.2012.112Google Scholar
Neiderhiser, J. M., Reiss, D., Pedersen, N. L., Lichtenstein, P., Spotts, E. L., Hansson, K., … & Elthammer, O. (2004). Genetic and environmental influences on mothering of adolescents: A comparison of two samples. Developmental Psychology, 40(3), 335.Google Scholar
Nettle, D. (2006). The evolution of personality variation in humans and other animals. American Psychologist, 61(6), 622.Google Scholar
Nöthling, J., Malan-Müller, S., Abrahams, N., Hemmings, S. M. J., & Seedat, S. (2020). Epigenetic alterations associated with childhood trauma and adult mental health outcomes: A systematic review. The World Journal of Biological Psychiatry, 21(7), 493512. https://doi.org/10.1080/15622975.2019.1583369Google Scholar
O’Donnell, K. J., & Meaney, M. J. (2020). Epigenetics, development, and psychopathology. Annual Review of Clinical Psychiatry, 16, 327350. https://doi.org/10.1146/ANNUREV-CLINPSY-050718-095530Google Scholar
Padilla‐Walker, L. M., & Christensen, K. J. (2011). Empathy and self‐regulation as mediators between parenting and adolescents’ prosocial behavior toward strangers, friends, and family. Journal of Research on Adolescence, 21(3), 545551.Google Scholar
Paz, Y., Davidov, M., Orlitsky, T., Roth-Hanania, R., & Zahn-Waxler, C. (2021). Developmental trajectories of empathic concern in infancy and their links to social competence in early childhood. Journal of Child Psychology and Psychiatry. https://doi.org/10.1111/JCPP.13516Google Scholar
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2016). Top 10 replicated findings from behavioral genetics. Perspectives on Psychological Science, 11(1), 323. https://doi.org/10.1177/1745691615617439Google Scholar
Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84(2), 309.Google Scholar
Poulin, M. J., Holman, E. A., & Buffone, A. (2012). The neurogenetics of nice: Receptor genes for oxytocin and vasopressin interact with threat to predict prosocial behavior. Psychological Science, 23(5), 446452.Google Scholar
Power, R. A., & Pluess, M. (2015). Heritability estimates of the Big Five personality traits based on common genetic variants. Translational Psychiatry 5(7), e604e604. https://doi.org/10.1038/tp.2015.96Google Scholar
Primes, G., & Fieder, M. (2018). Real-life helping behaviours in North America: A genome-wide association approach. PLoS ONE, 13(1), e0190950. https://doi.org/10.1371/JOURNAL.PONE.0190950Google Scholar
Pun, A., Ferera, M., Diesendruck, G., Kiley Hamlin, J., & Baron, A. S. (2018). Foundations of infants’ social group evaluations. Developmental Science, 21(3), e12586. https://doi.org/10.1111/DESC.12586Google Scholar
Reddy, L. A., Newman, E., De Thomas, C. A., & Chun, V. (2009). Effectiveness of school-based prevention and intervention programs for children and adolescents with emotional disturbance: A meta-analysis. Journal of School Psychology, 47(2), 7799. https://doi.org/10.1016/J.JSP.2008.11.001Google Scholar
Riem, M. M. E., Pieper, S., Out, D., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2011). Oxytocin receptor gene and depressive symptoms associated with physiological reactivity to infant crying. Social Cognitive and Affective Neuroscience, 6(3), 294300. https://doi.org/10.1093/SCAN/NSQ035Google Scholar
Richards, J. S., Hartman, C. A., Franke, B., Hoekstra, P. J., Heslenfeld, D. J., Oosterlaan, J., … & Buitelaar, J. K. (2015). Differential susceptibility to maternal expressed emotion in children with ADHD and their siblings? Investigating plasticity genes, prosocial and antisocial behaviour. European Child & Adolescent Psychiatry, 24(2), 209217.Google Scholar
Rivizzigno, A. S., Brendgen, M., Feng, B., Vitaro, F., Dionne, G., Tremblay, R. E., & Boivin, M. (2014). Gene–environment interplay between number of friends and prosocial leadership behavior in children. Merrill-Palmer Quarterly (1982–), 60(2), 110141.Google Scholar
Rothbart, M. K., Ahadi, S. A., & Evans, D. E. (2000). Temperament and personality: Origins and outcomes. Journal of Personality and Social Psychology, 78(1), 122.Google Scholar
Sasaki, J. Y., Kim, H. S., Mojaverian, T., Kelley, L. D. S., Park, I. Y., & Janušonis, S. (2013). Religion priming differentially increases prosocial behavior among variants of the dopamine D4 receptor (DRD4) gene. Social Cognitive and Affective Neuroscience, 8(2), 209215. https://doi.org/10.1093/SCAN/NSR089Google Scholar
Scourfield, J., John, B., Martin, N., & McGuffin, P. (2004). The development of prosocial behaviour in children and adolescents: A twin study. Journal of Child Psychology and Psychiatry, 45(5), 927935. https://doi.org/10.1111/J.1469-7610.2004.T01-1-00286.XCrossRefGoogle ScholarPubMed
Shang, S., Wu, N., & Su, Y. (2017). How oxytocin receptor (OXTR) single nucleotide polymorphisms act on prosociality: The mediation role of moral evaluation. Frontiers in Psychology, 8(MAR), 396. https://doi.org/10.3389/FPSYG.2017.00396/BIBTEXGoogle Scholar
Skuse, D. H., & Gallagher, L. (2009). Dopaminergic-neuropeptide interactions in the social brain. Trends in Cognitive Sciences, 13(1), 2735. https://doi.org/10.1016/J.TICS.2008.09.007Google Scholar
Spengler, M., Gottschling, J., & Spinath, F. M. (2012). Personality in childhood – A longitudinal behavior genetic approach. Personality and Individual Differences, 53(4), 411416. https://doi.org/10.1016/J.PAID.2012.01.019Google Scholar
Stoltenberg, S. F., Christ, C. C., & Carlo, G. (2013). Afraid to help: Social anxiety partially mediates the association between 5-HTTLPR triallelic genotype and prosocial behavior. Social Neuroscience, 8(5), 400406. https://doi.org/10.1080/17470919.2013.807874/SUPPL_FILE/PSNS_A_807874_SM7261.PDFGoogle Scholar
Thielmann, I., Spadaro, G., & Balliet, D. (2020). Personality and prosocial behavior: A theoretical framework and meta-analysis. Psychological Bulletin, 146(1), 3090. https://doi.org/10.1037/BUL0000217Google Scholar
Twito, L., & Knafo-Noam, A. (2020). Beyond culture and the family: Evidence from twin studies on the genetic and environmental contribution to values. Neuroscience & Biobehavioral Reviews, 112, 135143.Google Scholar
Uzefovsky, F., & Knafo-Noam, A. (2016). Empathy development throughout the life span. In Social cognition (pp. 89115). Routledge.Google Scholar
van der Meulen, M., Steinbeis, N., Achterberg, M., van IJzendoorn, M. H., & Crone, E. A. (2018). Heritability of neural reactions to social exclusion and prosocial compensation in middle childhood. Developmental Cognitive Neuroscience, 34, 4252. https://doi.org/10.1016/J.DCN.2018.05.010Google Scholar
van der Meulen, M., Wierenga, L. M., Achterberg, M., Drenth, N., van IJzendoorn, M. H., & Crone, E. A. (2020). Genetic and environmental influences on structure of the social brain in childhood. Developmental Cognitive Neuroscience, 44, 100782. https://doi.org/10.1016/J.DCN.2020.100782Google Scholar
van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Pannebakker, F., & Out, D. (2010). In defence of situational morality: Genetic, dispositional and situational determinants of children’s donating to charity. Journal of Moral Education, 39(1), 120. https://doi.org/10.1080/03057240903528535Google Scholar
van Ijzendoorn, M. H., Huffmeijer, R., Alink, L. R., Bakermans-Kranenburg, M. J., & Tops, M. (2011). The impact of oxytocin administration on charitable donating is moderated by experiences of parental love-withdrawal. Frontiers in Psychology, 2, 258.Google Scholar
Van Tongeren, D. R., Green, J. D., Davis, D. E., Hook, J. N., & Hulsey, T. L. (2016). Prosociality enhances meaning in life. The Journal of Positive Psychology, 11(3), 225236. https://doi.org/10.1080/17439760.2015.1048814Google Scholar
Vertsberger, D., & Knafo-Noam, A. (2019). Mothers’ and fathers’ parenting and longitudinal associations with children’s observed distress to limitations: From pregnancy to toddlerhood. Developmental Psychology, 55(1), 123.Google Scholar
Vukasović, T., & Bratko, D. (2015). Heritability of personality: A meta-analysis of behavior genetic studies. Psychological Bulletin, 141(4), 769. https://doi.org/10.1037/BUL0000017Google Scholar
Waller, R., Trentacosta, C. J., Shaw, D. S., Neiderhiser, J. M., Ganiban, J. M., Reiss, D., Leve, L. D., & Hyde, L. W. (2016). Heritable temperament pathways to early callous–unemotional behaviour. The British Journal of Psychiatry, 209(6), 475482. https://doi.org/10.1192/BJP.BP.116.181503Google Scholar
Walter, H. (2012). Social cognitive neuroscience of empathy: Concepts, circuits, and genes. Emotion Review, 4(1), 917. https://doi.org/10.1177/1754073911421379Google Scholar
Warneken, F. (2016). Insights into the biological foundation of human altruistic sentiments. Current Opinion in Psychology, 7, 5156. https://doi.org/10.1016/J.COPSYC.2015.07.013Google Scholar
Warrier, V., Grasby, K. L., Uzefovsky, F., Toro, R., Smith, P., Chakrabarti, B., Khadake, J., Mawbey-Adamson, E., Litterman, N., Hottenga, J. J., Lubke, G., Boomsma, D. I., Martin, N. G., Hatemi, P. K., Medland, S. E., Hinds, D. A., Bourgeron, T., & Baron-Cohen, S. (2018). Genome-wide meta-analysis of cognitive empathy: Heritability, and correlates with sex, neuropsychiatric conditions and cognition. Molecular Psychiatry, 23(6), 14021409. https://doi.org/10.1038/mp.2017.122Google Scholar
Warrier, Varun, the 23andMe Research Team, Bourgeron, T., & Baron-Cohen, S. (2017). Genome-wide association study of social relationship satisfaction: Significant loci and correlations with psychiatric conditions. BioRxiv, 196071. https://doi.org/10.1101/196071Google Scholar
Wu, N., & Su, Y. (2015). Oxytocin receptor gene relates to theory of mind and prosocial behavior in children. Journal of Cognition and Development, 16(2), 302313.Google Scholar
Wu, N., & Su, Y. (2018), Variations in the oxytocin receptor gene and prosocial behavior: Moderating effects of situational factors. Integrative Zoology, 13, 687697. https://doi.org/10.1111/1749-4877.12336Google Scholar
Zentner, M., & Bates, J. E. (2008). Child temperament: An integrative review of concepts, research programs, and measures. European Journal of Developmental Science, 2(1–2), 737.Google Scholar
Zhang, X., & Belsky, J. (2022). Three phases of gene × environment interaction research: Theoretical assumptions underlying gene selection. Development and Psychopathology, 34(1), 295306.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×