Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T11:26:35.478Z Has data issue: false hasContentIssue false

5 - The Developmental Psychophysiology of Prosociality

from Part I - Development of Prosociality

Published online by Cambridge University Press:  25 May 2023

Tina Malti
Affiliation:
University of Toronto
Maayan Davidov
Affiliation:
The Hebrew University of Jerusalem
Get access

Summary

For four decades, developmental scientists have been examining the links between children’s and adolescents’ prosociality and the activity of their peripheral physiological systems. In this chapter, we review the theories and studies that evaluate these links. In particular, we emphasize that the developmental psychophysiology of prosociality needs to be understood as involving dynamic and nonlinear processes occurring within the immediate contexts of evocative situations and shaped by the enduring contexts of close relationships.

Type
Chapter
Information
The Cambridge Handbook of Prosociality
Development, Mechanisms, Promotion
, pp. 85 - 107
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acland, E. L., Colasante, T., & Malti, T. (2019). Respiratory sinus arrhythmia and prosociality in childhood: Evidence for a quadratic effect. Developmental Psychobiology, 61(8), 11461156. https://doi.org/10.1002/dev.21872Google Scholar
Alen, N. V., Deer, L. K., Karimi, M., Fevzieva, E., Hastings, P. D., & Hostinar, C. E. (2021). Children’s altruism following acute stress: The role of autonomic nervous system activity and social support. Developmental Science, 24, 115. https://doi.org/10.1111/desc.13099Google Scholar
Alink, L. R., Ijzendoorn, M. H., Bakermans-Kranenburg, M. J., Mesman, J., Juffer, F., & Koot, H. M. (2008). Cortisol and externalizing behavior in children and adolescents: Mixed meta-analytic evidence for the inverse relation of basal cortisol and cortisol reactivity with externalizing behavior. Developmental Psychobiology, 50(5), 427450. doi:10.1002/dev.20300CrossRefGoogle ScholarPubMed
Apter-Levi, Y., Pratt, M., Vakart, A., Feldman, M., Zagoory-Sharon, O., & Feldman, R. (2016). Maternal depression across the first years of life compromises child psychosocial adjustment; relations to child HPA-axis functioning. Psychoneuroendocrinology, 64, 4756. doi:10.1016/j.psyneuen.2015.11.006Google Scholar
Beauchaine, T. P. (2015). Respiratory sinus arrhythmia: A transdiagnostic biomarker of emotion dysregulation and psychopathology. Current Opinion in Psychology, 3, 4347. https://doi.org/10.1016/j.copsyc.2015.01.017Google Scholar
Behnsen, P., Buil, M., Koot, S., Huizink, A., & van Lier, P. (2018). Classroom social experiences in early elementary school relate to diurnal cortisol levels. Psychoneuroendocrinology, 87, 18. doi:10.1016/j.psyneuen.2017.09.025Google Scholar
Benito-Gomez, M., Fletcher, A. C., & Buehler, C. (2019). Sympathetic and parasympathetic nervous system functioning and experiences of peer exclusion: Links to internalizing problems in early adolescence. Journal of Abnormal Child Psychology, 47(4), 633644. doi:10.1007/s10802-018-0472-0Google Scholar
Bernard, K., Dozier, M., Bick, J., & Gordon, M. K. (2015). Intervening to enhance regulation among children at risk for neglect: Results of a randomized clinical trial. Development and Psychopathology, 27, 829841.Google Scholar
Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., Stone, P. H., & van der Molen, M. W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34(6), 623648.CrossRefGoogle ScholarPubMed
Berntson, G., & Cacioppo, J. (2007). Integrative physiology: Homeostasis, allostasis, and the orchestration of systemic physiology. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (Eds.), Handbook of psychophysiology (3rd ed., pp. 453481). Cambridge University Press.Google Scholar
Berntson, G. G., Cacioppo, J. T., Quigley, K. S., & Fabro, V. T. (1994). Autonomic space and psychophysiological response. Psychophysiology, 31(1), 4461. https://doi.org/10.1111/j.1469-8986.1994.tb01024.xGoogle Scholar
Berntson, G. G., Quigley, K. S., & Lozano, D. (2007). Cardiovascular psychophysiology. In Handbook of psychophysiology (3rd ed., pp. 182210). Cambridge University Press. https://doi.org/10.1017/CBO9780511546396.008Google Scholar
Borelli, J. L., Stern, J. A., Marvin, M. J., Smiley, P. A., Pettit, C., & Samudio, M. (2021). Reflective functioning and empathy among mothers of school-aged children: Charting the space between. Emotion, 21(4), 783800. https://doi.org/10.1037/emo0000747Google Scholar
Calkins, S. D. (1997). Cardiac vagal tone indices of temperamental reactivity and behavioral regulation in young children. Developmental Psychobiology, 31(2), 125135. https://doi.org/10.1002/(sici)1098-2302(199709)31:2<125::aid-dev5>3.0.co;2-m3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Carlo, G., Hastings, P. D., Dicus, J. L., & Ugarte, E. (2022). Development, culture, and neurobiology of moral emotions in ethnic/racial minority children: A case study of U.S. Latino/a children. In Dukes, D., Walle, E., & Samson, A. C. (Eds.), The Oxford handbook of emotional development (pp. 526541). Oxford University Press.Google Scholar
Carter, C. S., & Porges, S. W. (2013). The biochemistry of love: An oxytocin hypothesis. EMBO Reports, 14(1), 1216. https://doi.org/10.1038/embor.2012.191Google Scholar
Catherine, N. L., Schonert-Reichl, K. A., Hertzman, C., & Oberlander, T. F. (2012). Afternoon cortisol in elementary school classrooms: Associations with peer and teacher support and child behavior. School Mental Health, 4(3), 181192.Google Scholar
Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5(7), 374381. doi:10.1038/nrendo.2009.106Google Scholar
Clark, C. A., Skowron, E. A., Giuliano, R. J., & Fisher, P. A. (2016). Intersections between cardiac physiology, emotion regulation and interpersonal warmth in preschoolers: Implications for drug abuse prevention from translational neuroscience. Drug and Alcohol Dependence, 163. doi:10.1016/j.drugalcdep.2016.01.033Google Scholar
Coulombe, B. R., Rudd, K. L., & Yates, T. M. (2019). Children’s physiological reactivity in emotion contexts and prosocial behavior. Brain and Behavior, 9(10), 116. https://doi.org/10.1002/brb3.1380Google Scholar
Cui, L., Criss, M. M., Ratliff, E., Wu, Z., Houltberg, B, Silk, J. S., & Morris, A. S. (2020). Longitudinal links between maternal and peer emotion socialization and adolescent girls’ socioemotional adjustment. Developmental Psychology, 56, 595607. http://dx.doi.org/10.1037/dev0000861Google Scholar
Cui, L., Morris, A. S., Harrist, A. W., Larzelere, R. E., Criss, M. M., & Houltberg, B. J. (2015). Adolescent RSA responses during an anger discussion task: Relations to emotion regulation and adjustment. Emotion, 15(3), 360372. doi:10.1037/emo0000040Google Scholar
Cui, L., Zhang, X., Houltberg, B. H., Criss, M. M., & Morris, A. S. (2019). RSA reactivity in response to viewing bullying film and adolescent social adjustment. Developmental Psychobiology, 61, 592604. doiI:10.1002/dev.21835Google Scholar
Dahl, R. E., & Gunnar, M. R. (2009). Heightened stress responsiveness and emotional reactivity during pubertal maturation: Implications for psychopathology. Development and Psychopathology, 21(1), 16. doi:10.1017/s0954579409000017Google Scholar
Davidov, M., Paz, Y., Roth‐Hanania, R., Uzefovsky, F., Orlitsky, T., Mankuta, D., & Zahn‐Waxler, C. (2020). Caring babies: Concern for others in distress during infancy. Developmental Science, 24(2), e13016. https://doi.org/10.1111/desc.13016CrossRefGoogle ScholarPubMed
Dawson, M. E., Schell, A. M., & Filion, D. L. (2007). The electrodermal system. In Handbook of psychophysiology (3rd ed., pp. 159181). Cambridge University Press. https://doi.org/10.1017/CBO9780511546396.007Google Scholar
Decety, J., Bartal, I. B.-A., Uzefovsky, F., & Knafo-Noam, A. (2016). Empathy as a driver of prosocial behaviour: Highly conserved neurobehavioural mechanisms across species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371(1686), 20150077. https://doi.org/10.1098/rstb.2015.0077Google Scholar
Diamond, L. M., Fagundes, C. P., & Butterworth, M. R. (2012). Attachment style, vagal tone, and empathy during mother-adolescent interactions. Journal of Research on Adolescence, 22(1), 165184. doi:10.1111/j.1532-7795.2011.00762.xGoogle Scholar
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355391. https://doi.org/10.1037/0033-2909.130.3.355Google Scholar
Eckstein‐Madry, T., Piskernik, B., & Ahnert, L. (2021). Attachment and stress regulation in socioeconomically disadvantaged children: Can public childcare compensate? Infant Mental Health Journal, 42(6), 839850. doi:10.1002/imhj.21878Google Scholar
Eisenberg, N., & Eggum, N. D. (2009). Empathic responding: Sympathy and personal distress. In Decety, J. & Ickes, W. (Eds.), The social neuroscience of empathy (pp. 7184). MIT Press. https://doi.org/10.7551/mitpress/9780262012973.003.0007Google Scholar
Eisenberg, N., Fabes, R. A., Karbon, M., Murphy, B. C., Wosinski, M., Polazzi, L., … & Juhnke, C. (1996). The relations of children’s dispositional prosocial behavior to emotionality, regulation, and social functioning. Child Development, 67(3), 974992. doi:10.2307/1131874Google Scholar
Eisenberg, N., Fabes, R. A., Murphy, B., Karbon, M., Smith, M., & Maszk, P. (1996). The relations of children’s dispositional empathy-related responding to their emotionality, regulation, and social functioning. Developmental Psychology, 32(2), 195209. doi:10.1037/0012-1649.32.2.195Google Scholar
Eisenberg, N., Fabes, R. A., Schaller, M., Carlo, G., & Miller, P. A. (1991). The relations of parental characteristics and practices to children’s vicarious emotional responding. Child Development, 62(6), 13931408. doi:10.2307/1130814Google Scholar
Eisenberg, N., VanSchyndel, S. K., & Spinrad, T. L. (2016) Prosocial motivations: Inferences from an opaque body of work. Child Development, 87(6), 16681678. doi:10.1111/cdev.12638Google Scholar
Fabes, R. A., Eisenberg, N., & Eisenbud, L. (1993). Behavioral and physiological correlates of children’s reactions to others in distress. Developmental Psychology, 29(4), 655663. doi:10.1037/0012-1649.29.4.655Google Scholar
Feldman, R. (2012). Parent–infant synchrony: A biobehavioral model of mutual influences in the formation of affiliative bonds. Monographs of the Society for Research in Child Development, 77(2), 4251. https://doi.org/10.1111/j.1540-5834.2011.00660.xGoogle Scholar
Fox, N. A., Kirwan, M., & Reeb-Sutherland, B. (2012). Measuring the physiology of emotion and emotion regulation: Timing is everything. Monographs of the Society for Research in Child Development, 77, 98108. https://doi.org/10.1111/j.1540-5834.2011.00668.xGoogle Scholar
Fridja, N. (1986). The emotions. Cambridge University Press.Google Scholar
Gill, K. L., & Calkins, S. D. (2003). Do aggressive/destructive toddlers lack concern for others? Behavioral and physiological indicators of empathic responding in 2-year-old children. Development and Psychopathology, 15(1), 5571. doi:10.1017/s095457940300004xGoogle Scholar
Goetz, J. L., Keltner, D., & Simon-Thomas, E. (2010). Compassion: An evolutionary analysis and empirical review. Psychological Bulletin, 136(3), 351374. https://doi.org/10.1037/a0018807Google Scholar
Granger, D. A., Kivlighan, K. T., Blair, C., El-Sheikh, M., Mize, J., Lisonbee, J. A., & Buckhalt, J. A. (2006). Integrating the measurement of salivary-amylase into studies of child health, development, and social relationships. Journal of Social and Personal Relationships, 23(2), 267290. doi:10.1177/0265407506062479Google Scholar
Graziano, P. A., Keane, S. P., & Calkins, S. D. (2007). Cardiac vagal regulation and early peer status. Child Development, 78(1), 264278. doi:10.1111/j.1467-8624.2007.00996.xGoogle Scholar
Grusec, J. E., & Redler, E. (1980). Attribution, reinforcement, and altruism: A developmental analysis. Developmental Psychology, 16(5), 525534. https://doi.org/10.1037/0012-1649.16.5.525Google Scholar
Gunnar, M. R., & Adam, E. K. (2012). The hypothalamic–pituitary–adrenocortical system and emotion: Current wisdom and future directions. Monographs of the Society for Research in Child Development, 77(2), 109119.Google Scholar
Gunnar, M. R., Doom, J. R., & Esposito, E. A. (2015). Psychoneuroendocrinology of stress: Normative development and individual differences. In Handbook of child psychology and developmental science: Socioemotional processes, Vol. 3 (7th ed., pp. 106151). John Wiley & Sons. https://doi.org/10.1002/9781118963418.childpsy304Google Scholar
Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145173. https://doi.org/10.1146/annurev.psych.58.110405.085605Google Scholar
Hastings, P. D., & Kahle, S. (2019). Get bent into shape: The non-linear, multi-system, contextually-embedded psychophysiology of emotional development. In LoBue, V., Pérez-Edgar, K., & Buss, K. A. (Eds.), Handbook of emotional development (pp. 2755). Springer International. https://doi.org/10.1007/978-3-030-17332-6_3Google Scholar
Hastings, P. D., Kahle, S., Fleming, C., Lohr, M. J., Katz, L. F., & Oxford, M. (2019). An intervention that increases parental sensitivity in families referred to Child Protective Services also changes toddlers’ parasympathetic regulation. Developmental Science, 22(1), e12725. https://doi.org/10.1111/desc.12725CrossRefGoogle ScholarPubMed
Hastings, P. D., Kahle, S. S., & Han, G. H.-P. (2014). Developmental affective psychophysiology: Using physiology to inform our understanding of emotional development. Children and Emotion, 26, 1328. https://doi.org/10.1159/000354347Google Scholar
Hastings, P. D., & Miller, J. G. (2014). Autonomic regulation, polyvagal theory, and children’s prosocial development. In Padilla-Walker, L. & Carlo, G. (Eds.), Prosocial development: A multidimensional approach (pp. 112127). Oxford University Press.Google Scholar
Hastings, P. D., Miller, J. G., Kahle, S., & Zahn-Waxler, C. (2014). The neurobiological bases of empathic concern for others. In Killen, M. & Smetana, J. (Eds.), Handbook of moral development (2nd ed., pp. 411434). Psychology Press.Google Scholar
Hastings, P. D., Miller, J. G., & Troxel, N. R. (2015). Making good: The socialization of children’s prosocial development. In Handbook of socialization: Theory and research (2nd ed., pp. 637660). Guilford Press.Google Scholar
Hastings, P. D., Nuselovici, J. N., Klimes-Dougan, B., Kendziora, K. T., Usher, B. A., Ho, M.-h. R., & Zahn-Waxler, C. (2009). Dysregulated coherence of subjective and cardiac emotional activation in adolescents with internalizing and externalizing problems. Journal of Child Psychology & Psychiatry, 50, 13481356. doi:10.1111/j.1469-7610.2009.02159.xGoogle Scholar
Hastings, P. D., Zahn-Waxler, C., & McShane, K. (2006). We are, by nature, moral creatures: Biological bases of concern for others. In Handbook of moral development (pp. 483516). Lawrence Erlbaum.Google Scholar
Hastings, P. D., Zahn-Waxler, C., Robinson, J., Usher, B., & Bridges, D. (2000). The development of concern for others in children with behavior problems. Developmental Psychology, 36(5), 531546. https://doi.org/10.1037/0012-1649.36.5.531CrossRefGoogle ScholarPubMed
Holmgren, R. A., Eisenberg, N., & Fabes, R. A. (1998). The relations of children’s situational empathy-related emotions to dispositional prosocial behaviour. International Journal of Behavioral Development, 22(1), 169193. doi:10.1080/016502598384568Google Scholar
Kaltas, G., & Chrousos, G. (2007). The neuroendocrinology of stress. In Cacioppo, J. T., Tassinary, L., & Berntson, G. G. (Eds.), Handbook of psychophysiology (pp. 303318). Cambridge University Press.Google Scholar
Kalvin, C. B., Bierman, K. L., & Gatzke-Kopp, L. M. (2016). Emotional reactivity, behavior problems, and social adjustment at school entry in a high-risk sample. Journal of Abnormal Child Psychology, 44(8), 15271541. doi:10.1007/s10802-016-0139-7Google Scholar
Kogan, A., Gruber, J., Shallcross, A. J., Ford, B. Q., & Mauss, I. B. (2013). Too much of a good thing? Cardiac vagal tone’s nonlinear relationship with well-being. Emotion, 13(4), 599604. doi:10.1037/a0032725Google Scholar
Kogan, A., Oveis, C., Carr, E. W., Gruber, J., Mauss, I. B., Shallcross, A., Impett, E. A., van der Lowe, I., Hui, B., Cheng, C., & Keltner, D. (2014). Vagal activity is quadratically related to prosocial traits, prosocial emotions, and observer perceptions of prosociality. Journal of Personality and Social Psychology, 107(6), 10511063. https://doi.org/10.1037/a0037509Google Scholar
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3), 394421. https://doi.org/10.1016/j.biopsycho.2010.03.010CrossRefGoogle ScholarPubMed
Larose, M.-P., Ouellet-Morin, I., Vitaro, F., Geoffroy, M. C., Ahun, M., Tremblay, R. E., & Côté, S. M. (2019). Impact of a social skills program on children’s stress: A cluster randomized trial. Psychoneuroendocrinology, 104, 115121. https://doi.org/10.1016/j.psyneuen.2019.02.017Google Scholar
Liew, J., Eisenberg, N., Spinrad, T. L., Eggum, N. D., Haugen, R., Kupfer, A., … & Baham, M. E. (2011). Physiological regulation and fearfulness as predictors of young children’s empathy-related reactions. Social Development, 20(1), 111134. doi:10.1111/j.1467-9507.2010.00575.xGoogle Scholar
Lincoln, A. (1861, March 4). Presidential inaugural address. Library of Congress. www.loc.gov/resource/mal.0773800/?st=text&r=-0.178,-0.004,1.376,1.679,0Google Scholar
MacLean, P. D. (1990). The triune brain in evolution: Role in paleocerebral functions. Springer Science & Business Media.Google Scholar
McEwen, B. S., & Stellar, E. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153(18), 20932101. https://doi. org/10.1001/archinte.1993.00410180039004Google Scholar
McQuade, J. D., & Breaux, R. P. (2017). Parent emotion socialization and pre-adolescent’s social and emotional adjustment: Moderating effects of autonomic nervous system reactivity. Biological Psychology, 130, 6776.Google Scholar
Mikulincer, M., & Shaver, P. R. (2005) Attachment theory and emotions in close relationships: Exploring the attachment-related dynamics of emotional reactions to relations events. Personal Relationships, 12, 281285.Google Scholar
Miller, J. G. (2018). Physiological mechanisms of prosociality. Current Opinion in Psychology, 20, 5054. https://doi.org/10.1016/j.copsyc.2017.08.018Google Scholar
Miller, J. G., Chocol, C., Nuselovici, J. N., Utendale, W. T., Simard, M., & Hastings, P. D. (2013). Children’s dynamic RSA change during anger and its relations with parenting, temperament, and control of aggression. Biological Psychology, 92(2), 417425. https://doi.org/10.1016/j.biopsycho.2012.12.005Google Scholar
Miller, J. G., & Hastings, P. D. (2016). Biopsychosocial models of prosociality: Compassionate love, vagal regulation, and children’s altruism. In Narvaez, D., Braungart-Rieker, J. M., Miller-Graff, L. E., Gettler, L. T., & Hastings, P. D. (Eds.), Contexts for young child flourishing: Evolution, family and society (pp. 185200). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780190237790.003.0009Google Scholar
Miller, J. G., & Hastings, P. D. (2019). Parenting, neurobiology, and prosocial development. In Laible, D. J., Carlo, G., & Padilla-Walker, L. M. (Eds.), The Oxford handbook of parenting and moral development (pp. 128144). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190638696.013.9Google Scholar
Miller, J. G., Kahle, S., & Hastings, P. D. (2015). Roots and benefits of costly giving: Children who are more altruistic have greater autonomic flexibility and less family wealth. Psychological Science, 26(7), 10381045. doi:10.1177/0956797615578476Google Scholar
Miller, J. G., Kahle, S., & Hastings, P. D. (2017). Moderate baseline vagal tone predicts greater prosociality in children. Developmental Psychology, 53(2), 274289. https://doi.org/10.1037/dev0000238Google Scholar
Miller, J. G., Kahle, S., Troxel, N. R., & Hastings, P. D. (2020). The development of generosity from 4 to 6 years: Examining stability and the biopsychosocial contributions of children’s vagal flexibility and mothers’ compassion. Frontiers in Psychology, 11, 110. doi:10.3389/fpsyg.2020.590384Google Scholar
Miller, J. G., Nuselovici, J. N., & Hastings, P. D. (2016). Nonrandom acts of kindness: Parasympathetic and subjective empathic responses to sadness predict children’s prosociality. Child Development, 87, 16791690. doi:10.1111/cdev.12629Google Scholar
Miller, J. G., Xia, G., & Hastings, P. D. (2019). Resting heart rate variability is negatively associated with mirror neuron and limbic response to emotional faces. Biological Psychology, 146, 107717. https://doi.org/10.1016/j.biopsycho.2019.107717Google Scholar
Muhtadie, L., Koslov, K., Akinola, M., & Mendes, W. B. (2015). Vagal flexibility: A physiological predictor of social sensitivity. Journal of Personality and Social Psychology, 109(1), 106120. doi:10.1037/pspp0000016Google Scholar
Murray-Close, D. (2013). Psychophysiology of adolescent peer relations I: Theory and research findings. Journal of Research on Adolescence, 23(2), 236259. doi:10.1111/j.1532-7795.2012.00828.xGoogle Scholar
Nelson, E. M., & Spieker, S. J. (2013). Intervention effects on morning and stimulated cortisol responses among toddlers in foster care. Infant Mental Health Journal, 34(3), 211221. doi:10.1002/imhj.21382Google Scholar
Oberle, E. (2018). Social-emotional competence and early adolescents’ peer acceptance in school: Examining the role of afternoon cortisol. PLoS ONE, 13(2). doi:10.1371/journal.pone.0192639CrossRefGoogle ScholarPubMed
Oberle, E., Mclachlan, K., Catherine, N. L., Brain, U., Schonert-Reichl, K. A., Weinberg, J., & Oberlander, T. F. (2017). Afternoon cortisol provides a link between self-regulated anger and peer-reported aggression in typically developing children in the school context. Developmental Psychobiology, 59(6), 688695. doi:10.1002/dev.21522Google Scholar
Öhman, A. (1993). Fear and anxiety as emotional phenomena: Clinical phenomenology, evolutionary perspectives, and information-processing mechanisms. In Lewis, M. & Haviland, J. (Eds.), Handbook of emotions (pp. 511536). Guilford Press.Google Scholar
Oveis, C., Cohen, A. B., Gruber, J., Shiota, M. N., Haidt, J., & Keltner, D. (2009). Resting respiratory sinus arrhythmia is associated with tonic positive emotionality. Emotion, 9(2), 265270. doi:10.1037/a0015383Google Scholar
Padilla‐Walker, L. M., Fraser, A. M., Black, B. B., & Bean, R. A. (2015). Associations between friendship, sympathy, and prosocial behavior toward friends. Journal of Research on Adolescence, 25(1), 2835.Google Scholar
Page, M. E., Conger, K., Guyer, A. E., Hastings, P. D., & Thompson, R. (2016). Children and the intergenerational transmission of poverty: Research frontiers and policy implications. Center for Poverty Research, University of California Davis.Google Scholar
Panksepp, J. (1986). The neurochemistry of behavior. Annual Review of Psychology, 37, 77107.CrossRefGoogle ScholarPubMed
Pascual-Sagastizabal, E., Puerto, N. D., Cardas, J., Sánchez-Martín, J. R., Vergara, A. I., & Azurmendi, A. (2019). Testosterone and cortisol modulate the effects of empathy on aggression in children. Psychoneuroendocrinology, 103, 118124. doi:10.1016/j.psyneuen.2019.01.014Google Scholar
Perry, N. B., Dollar, J. M., Calkins, S. D., Keane, S. P., & Shanahan, L. (2020). Maternal socialization of child emotion and adolescent adjustment: Indirect effects through emotion regulation. Developmental Psychology, 56(3), 541552. doi:10.1037/dev0000815Google Scholar
Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology, 32(4), 301318. https://doi.org/10.1111/j.1469-8986.1995.tb01213.xGoogle Scholar
Porges, S. W. (2011). The polyvagal theory: Neurophysiological foundations of emotions, attachment, communication, and self-regulation. W. W. Norton.Google Scholar
Porges, S. W., & Byrne, E. A. (1992). Research methods for measurement of heart rate and respiration. Biological Psychology, 34, 93130.Google Scholar
Porges, S. W., & Furman, S. A. (2011). The early development of the autonomic nervous system provides a neural platform for social behavior: A polyvagal perspective. Infant and Child Development, 20(1), 106118. https://doi.org/10.1002/icd.688Google Scholar
Preston, S. D., & de Waal, F. B. M. (2002). Empathy: Its ultimate and proximate bases. Behavioral and Brain Sciences, 25(1), 120. https://doi.org/10.1017/S0140525X02000018Google Scholar
Quigley, K. M., & Moore, G. A. (2018). Development of cardiac autonomic balance in infancy and early childhood: A possible pathway to mental and physical health outcomes. Developmental Review, 49, 4161. doi:10.1016/j.dr.2018.06.004CrossRefGoogle Scholar
Quigley, K. S., & Stifter, C. A. (2006). A comparative validation of sympathetic reactivity in children and adults. Psychophysiology, 43(4), 357365. http://doi.org/10.1111/j.1469-8986.2006.00405.xGoogle Scholar
Raine, A. (1997). Antisocial behavior and psychophysiology: A biosocial perspective and a prefrontal dysfunction hypothesis. In Stoff, D. M., Breiling, J., & Maser, J. D. (Eds.), Handbook of antisocial behavior (pp. 289304). Wiley.Google Scholar
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21(1), 5589. https://doi.org/10.1210/edrv.21.1.0389Google Scholar
Simons, S. S., Cillessen, A. H., & Weerth, C. D. (2017). Cortisol stress responses and children’s behavioral functioning at school. Developmental Psychobiology, 59(2), 217224. doi:10.1002/dev.21484Google Scholar
Smith, R., Thayer, J. F., Khalsa, S. S., & Lane, R. D. (2017). The hierarchical basis of neurovisceral integration. Neuroscience & Behavioral Reviews, 75, 274296.Google Scholar
Sober, E., & Wilson, D. S. (1998). Unto others: The evolution and psychology of unselfish behavior. Harvard University Press.Google Scholar
Spangler, D. P., Bell, M. A., & Deater-Deckard, K. (2015). Emotion suppression moderates the quadratic association between RSA and executive function. Psychophysiology, 52(9), 11751185. doi:10.1111/psyp.12451Google Scholar
Steinberg, L., & Morris, A. S. (2001). Adolescent development. Annual Review of Psychology, 52(1), 83110.Google Scholar
Stern, J. A., & Cassidy, J. (2018). Empathy from infancy to adolescence: An attachment perspective on the development of individual differences. Developmental Review, 47, 122. doi:10.1016/j.dr.2017.09.002Google Scholar
Swain, J. E., Konrath, S., Brown, S. L., Finegood, E. D., Akce, L. B., Dayton, C. J., & Ho, S. S. (2012). Parenting and beyond: Common neurocircuits underlying parental and altruistic caregiving. Parenting, Science and Practice, 12(2–3), 115123. https://doi.org/10.1080/15295192.2012.680409Google Scholar
Tabachnick, A. R., Raby, K. L., Goldstein, A., Zajac, L., & Dozier, M. (2019). Effects of an attachment-based intervention in infancy on children’s autonomic regulation during middle childhood. Biological Psychology, 143, 2231. doi:10.1016/j.biopsycho.2019.01.006Google Scholar
Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37(2), 141153. https://doi.org/10.1007/s12160-009-9101-zGoogle Scholar
Underwood, L. G. (2009). Compassionate love: A framework for research. In Fehr, B., Sprecher, S., & Underwood, L. G. (Eds.), The science of compassionate love: Theory, research, and applications (pp. 325). Blackwell Press.Google Scholar
Ugarte, E., Liu, S., & Hastings, P. D. (2021). Parasympathetic activity, emotion socialization, and internalizing and externalizing problems in children: Longitudinal associations between and within families. Developmental Psychology, 57(9), 15251539. https://doi.org/10.1037/dev0001039Google Scholar
van Goozen, S. H., Fairchild, G., Snoek, H., & Harold, G. T. (2007). The evidence for a neurobiological model of childhood antisocial behavior. Psychological Bulletin, 133(1), 149182. doi:10.1037/0033-2909.133.1.149Google Scholar
Weissman, D. G., Gelardi, K. L., Conger, R. W., Robins, R. W., Hastings, P. D., & Guyer, A. E. (2018). Adolescent externalizing problems: Contributions of community crime exposure and neural function during emotion introspection in Mexican-origin youth. Journal of Research on Adolescence, 28(2), 551563. https://doi.org/10.1111/jora.12358CrossRefGoogle ScholarPubMed
Wilson, E. O. (1978). The genetic evolution of altruism. In Wispe, L. (Ed.), Altruism, sympathy, and helping: Psychological and sociological principles (pp. 1137). Academic Press.Google Scholar
Young, S. K., Fox, N. A., & Zahn-Waxler, C. (1999). The relations between temperament and empathy in 2-year-olds. Developmental Psychology, 35(5), 11891197. https://doi.org/10.1037/0012-1649.35.5.1189Google Scholar
Zahn-Waxler, C., Cole, P. M., Welsh, J. D., & Fox, N. A. (1995). Psychophysiological correlates of empathy and prosocial behaviors in preschool children with behavior problems. Development and Psychopathology, 7(1), 2748. doi:10.1017/s0954579400006325Google Scholar
Zahn-Waxler, C., Shirtcliff, E. A., & Marceau, K. (2008). Disorders of childhood and adolescence: Gender and psychopathology. Annual Review of Clinical Psychology, 4, 275303. http://doi.org/10.1146/annurev.clinpsy.3.022806.091358Google Scholar
Zaki, J. (2014). Empathy: A motivated account. Psychological Bulletin, 140(6), 16081647. doi:10.1037/a0037679Google Scholar
Zhang, X., Gatzke-Kopp, L. M., Fosco, G. M., & Bierman, K. L. (2020). Parental support of self-regulation among children at risk for externalizing symptoms: Developmental trajectories of physiological regulation and behavioral adjustment. Developmental Psychology, 56(3), 528540. doi:10.1037/dev0000794Google Scholar
Zhang, R., & Wang, Z. (2019). Inhibitory control moderates the quadratic association between resting respiratory sinus arrhythmia and prosocial behaviors in children. Psychophysiology, 57(4), 114. https://doi.org/10.1111/psyp.13491Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×