Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T07:11:36.180Z Has data issue: false hasContentIssue false

3 - How Age-Related Changes in the Brain Affect Cognition

from Part I - Models of Cognitive Aging

Published online by Cambridge University Press:  28 May 2020

Ayanna K. Thomas
Affiliation:
Tufts University, Massachusetts
Angela Gutchess
Affiliation:
Brandeis University, Massachusetts
Get access

Summary

Cognition changes with age, and the amount and trajectory of change varies across individuals and functions. In this review, we argue that three general principles characterize adult life-span changes in brain and cognition. (1) Dimensionality: Many features of brain and cognition in aging and neurodegenerative disease represent quantitative differences along a continuum and are not unique to pathology. (2) Early influences – developmental origins of health and disease: Genetic dispositions and early environmental factors, likely even from fetal life, can have lasting impact on the brain and cognition. (3) Influences from a multitude of environmental factors: Current brain state and cognitive function will be determined by a combination of early factors and later environmental influences, often in interaction. These principles entail a model of age-associated cognitive decline and dementia based on dimensions rather than categories, life span rather than aging, and multidimensional systems-vulnerability rather than one major “biomarker.”

Type
Chapter
Information
The Cambridge Handbook of Cognitive Aging
A Life Course Perspective
, pp. 47 - 61
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, K. M., Wicks, S., Susser, E. S., et al. (2010). Birth weight, schizophrenia, and adult mental disorder: Is risk confined to the smallest babies? Archives of General Psychiatry, 67(9), 923930. http://dx.doi.org/10.1001/archgenpsychiatry.2010.100Google Scholar
Bale, T. L. (2015). Epigenetic and transgenerational reprogramming of brain development. Nature Reviews Neuroscience, 16(6), 332344. http://dx.doi.org/10.1038/nrn3818CrossRefGoogle ScholarPubMed
Baltes, P. B., & Kliegl, R. (1992). Further testing of limits of cognitive plasticity: Negative age differences in a mnemonic skill are robust. Developmental Psychology, 28(1), 121125. http://dx.doi.org/10.1037/0012-1649.28.1.121CrossRefGoogle Scholar
Barnes, S. K., & Ozanne, S. E. (2011). Pathways linking the early environment to long-term health and lifespan. Progress in Biophysics and Molecular Biology, 106(1), 323336. http://dx.doi.org/10.1016/j.pbiomolbio.2010.12.005Google Scholar
Boyke, J., Driemeyer, J., Gaser, C., Büchel, C., & May, A. (2008). Training-induced brain structure changes in the elderly. Journal of Neuroscience, 28(28), 70317035. http://dx.doi.org/10.1523/JNEUROSCI.0742-08.2008CrossRefGoogle ScholarPubMed
Bratsberg, B., & Rogeberg, O. (2018). Flynn effect and its reversal are both environmentally caused. Proceedings of the National Academy of Sciences USA, 115(26), 66746678. http://dx.doi.org/10.1073/pnas.1718793115Google Scholar
Brehmer, Y., Kalpouzos, G., Wenger, E., & Lövdén, M. (2014). Plasticity of brain and cognition in older adults. Psychological Research, 78(6), 790802. http://dx.doi.org/10.1007/s00426-014-0587-zGoogle Scholar
Brehmer, Y., Li, S. C., Müller, V., von Oertzen, T., & Lindenberger, U. (2007). Memory plasticity across the life span: Uncovering children’s latent potential. Developmental Psychology, 43(2), 465478. http://dx.doi.org/10.1037/0012-1649.43.2.465CrossRefGoogle ScholarPubMed
Brehmer, Y., Shing, Y. L., Heekeren, H. R., Lindenberger, U., & Bäckman, L. (2016). Training-induced changes in subsequent-memory effects: No major differences among children, younger adults, and older adults. NeuroImage, 131, 214225. http://dx.doi.org/10.1016/j.neuroimage.2015.11.074Google Scholar
Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: Training gains, transfer, and maintenance. Frontiers in Human Neuroscience, 6, p. 63. http://dx.doi.org/10.3389/fnhum.2012.00063CrossRefGoogle ScholarPubMed
Bürki, C. N., Ludwig, C., Chicherio, C., & de Ribaupierre, A. (2014). Individual differences in cognitive plasticity: An investigation of training curves in younger and older adults. Psychological Research, 78(6), 821835. http://dx.doi.org/10.1007/s00426-014-0559-3Google Scholar
Carretti, B., Borella, E., & De Beni, R. (2007). Does strategic memory training improve the working memory performance of younger and older adults? Experimental Psychology, 54(4), 311320. http://dx.doi.org/10.1027/1618-3169.54.4.311Google Scholar
Chang, L., Douet, V., Bloss, C., et al. (2016). Gray matter maturation and cognition in children with different APOE ε genotypes. Neurology, 87(6), 585594. http://dx.doi.org/10.1212/WNL.0000000000002939Google Scholar
Colom, R., Lluis-Font, J. M., & Andrés-Pueyo, A. (2005). The generational intelligence gains are caused by decreasing variance in the lower half of the distribution: Supporting evidence for the nutrition hypothesis. Intelligence, 33(1), 8391. http://dx.doi.org/10.1016/j.intell.2004.07.010Google Scholar
Corder, E. H., Saunders, A. M., Strittmatter, W. J., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261(5123), 921923. http://dx.doi.org/10.1126/science.8346443Google Scholar
Dahlin, E., Nyberg, L., Bäckman, L., & Neely, A. S. (2008). Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720730. http://dx.doi.org/10.1037/a0014296Google Scholar
de Lange, A. M. G., Bråthen, A. C. S., Grydeland, H., et al. (2016). White matter integrity as a marker for cognitive plasticity in aging. Neurobiology of Aging, 47, 7482. http://dx.doi.org/10.1016/j.neurobiolaging.2016.07.007Google Scholar
de Lange, A. M. G., Bråthen, A. C. S., Rohani, D. A., et al. (2017). The effects of memory training on behavioral and microstructural plasticity in young and older adults. Human Brain Mapping, 38(11), 56665680. http://dx.doi.org/10.1002/hbm.23756Google Scholar
de Lange, A. M. G., Bråthen, A. C. S., Rohani, D. A., Fjell, A. M., & Walhovd, K. B. (2018). The temporal dynamics of brain plasticity in aging. Cerebral Cortex, 28(5), 18571865. http://dx.doi.org/10.1093/cercor/bhy003Google Scholar
Deary, I. J., Pattie, A., & Starr, J. M. (2013). The stability of intelligence from age 11 to age 90 years: The Lothian birth cohort of 1921. Psychological Science, 24(12), 23612368. http://dx.doi.org/10.1177/0956797613486487CrossRefGoogle ScholarPubMed
Dekaban, A. S., & Sadowsky, D. (1978). Changes in brain weights during the span of human life: Relation of brain weights to body heights and body weights. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 4(4), 345356. https://doi.org/10.1002/ana.410040410Google Scholar
Draganski, B., Gaser, C., Busch, V., et al. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427(6972), 311312. http://dx.doi.org/10.1038/427311aGoogle Scholar
Engvig, A., Fjell, A. M., Westlye, L. T., et al. (2010). Effects of memory training on cortical thickness in the elderly. NeuroImage, 52(4), 16671676. http://dx.doi.org/10.1016/j.neuroimage.2010.05.041Google Scholar
Engvig, A., Fjell, A. M., Westlye, L. T., et al. (2012a). Memory training impacts short‐term changes in aging white matter: A longitudinal diffusion tensor imaging study. Human Brain Mapping, 33(10), 23902406. http://dx.doi.org/10.1002/hbm.21370Google Scholar
Engvig, A., Fjell, A. M., Westlye, L. T., et al. (2012b). Hippocampal subfield volumes correlate with memory training benefit in subjective memory impairment. NeuroImage, 61(1), 188194. http://dx.doi.org/10.1016/j.neuroimage.2012.02.072CrossRefGoogle ScholarPubMed
Engvig, A., Fjell, A. M., Westlye, L. T., et al. (2014). Effects of cognitive training on gray matter volumes in memory clinic patients with subjective memory impairment. Journal of Alzheimer’s Disease, 41(3), 779791. http://dx.doi.org/10.3233/JAD-131889Google Scholar
Fjell, A. M., Grydeland, H., Krogsrud, S. K., et al. (2015). Development and aging of cortical thickness correspond to genetic organization patterns. Proceedings of the National Academy of Sciences USA, 112(50), 1546215467. http://dx.doi.org/10.1073/pnas.1508831112CrossRefGoogle ScholarPubMed
Fjell, A. M., & Walhovd, K. B. (2010). Structural brain changes in aging: Courses, causes and cognitive consequences. Reviews in the Neurosciences, 21(3), 187222. https://doi.org/10.1515/REVNEURO.2010.21.3.187Google Scholar
Flynn, J. R. (1987). Massive IQ gains in 14 nations: What IQ tests really measure. Psychological Bulletin, 101(2), 171191. http://dx.doi.org/10.1037/0033-2909.101.2.171Google Scholar
Grady, C. (2012). The cognitive neuroscience of ageing. Nature Reviews Neuroscience, 13(7), 491. http://dx.doi.org/10.1038/nrn3256Google Scholar
Haukvik, U. K., Rimol, L. M., Roddey, J. C., et al. (2014). Normal birth weight variation is related to cortical morphology across the psychosis spectrum. Schizophrenia Bulletin, 40(2), 410419. http://dx.doi.org/10.1093/schbul/sbt005CrossRefGoogle ScholarPubMed
Hogstrom, L. J., Westlye, L. T., Walhovd, K. B., & Fjell, A. M. (2013). The structure of the cerebral cortex across adult life: Age-related patterns of surface area, thickness, and gyrification. Cerebral Cortex, 23(11), 25212530. http://dx.doi.org/10.1093/cercor/bhs231Google Scholar
Hülür, G., Ram, N., Willis, S. L., Schaie, K. W., & Gerstorf, D. (2015). Cognitive dedifferentiation with increasing age and proximity of death: Within-person evidence from the Seattle Longitudinal Study. Psychology and Aging, 30(2), 311323. http://dx.doi.org/10.1037/a0039260Google Scholar
Jack, C. R., Bennett, D. A., Blennow, K., et al. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s and Dementia, 14(4), 535562. http://dx.doi.org/10.1016/j.jalz.2018.02.018Google Scholar
Jagust, W. J. (2016). Early life sets the stage for aging. Proceedings of the National Academy of Sciences USA, 113(33), 91489150. http://dx.doi.org/10.1073/pnas.1609720113Google Scholar
Karama, S., Bastin, M. E., Murray, C., et al. (2014). Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Molecular Psychiatry, 19(5), 555559. http://dx.doi.org/10.1038/mp.2013.64Google Scholar
Khan, W., Giampietro, V., Banaschewski, T., et al. (2017). A multi-cohort study of ApoE ɛ4 and Amyloid-β effects on the hippocampus in Alzheimer’s disease. Journal of Alzheimer’s Disease, 56(3), 11591174. http://dx.doi.org/10.3233/JAD-161097CrossRefGoogle ScholarPubMed
Kivipelto, M., Solomon, A., Ahtiluoto, S., et al. (2013). The Finnish geriatric intervention study to prevent cognitive impairment and disability (FINGER): Study design and progress. Alzheimer’s and Dementia, 9(6), 657665. http://dx.doi.org/10.1016/j.jalz.2012.09.012Google Scholar
Kliegl, R., Smith, J., & Baltes, P. B. (1990). On the locus and process of magnification of age differences during mnemonic training. Developmental Psychology, 26(6), 894904. http://dx.doi.org/10.1037/0012-1649.26.6.894Google Scholar
Knickmeyer, R. C., Wang, J., Zhu, H., et al. (2013). Common variants in psychiatric risk genes predict brain structure at birth. Cerebral Cortex, 24(5), 12301246. http://dx.doi.org/10.1093/cercor/bhs401Google Scholar
Kovacs, G. G., Adle-Biassette, H., Milenkovic, I., et al. (2014). Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience, 269, 152172. http://dx.doi.org/10.1016/j.neuroscience.2014.03.045Google Scholar
Livingston, G., Sommerlad, A., Orgeta, V., et al. (2017). Dementia prevention, intervention, and care. Lancet, 390(10113), 26732734. http://dx.doi.org/10.1016/S0140-6736(17)31363-6CrossRefGoogle ScholarPubMed
Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010a). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659676. http://dx.doi.org/10.1037/a0020080CrossRefGoogle Scholar
Lövdén, M., Bodammer, N. C., Kühn, S., et al. (2010b). Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 48(13), 38783883. http://dx.doi.org/10.1016/j.neuropsychologia.2010.08.026Google Scholar
Lövdén, M., Schaefer, S., Noack, H., et al. (2012). Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiology of Aging, 33(3), 620e9620e22. http://dx.doi.org/10.1016/j.neurobiolaging.2011.02.013Google Scholar
Lyall, A. E., Shi, F., Geng, X., et al. (2015). Dynamic development of regional cortical thickness and surface area in early childhood. Cerebral Cortex, 25(8), 22042212. http://dx.doi.org/10.1093/cercor/bhu027Google Scholar
Lyons, M. J., York, T. P., Franz, C. E., et al. (2009). Genes determine stability and the environment determines change in cognitive ability during 35 years of adulthood. Psychological Science, 20(9), 11461152. http://dx.doi.org/10.1111/j.1467-9280.2009.02425.xGoogle Scholar
Melka, M. G., Gillis, J., Bernard, M., et al. (2013). FTO, obesity and the adolescent brain. Human Molecular Genetics, 22(5), 10501058. http://dx.doi.org/10.1093/hmg/dds504Google Scholar
Mosing, M. A., Madison, G., Pedersen, N. L., & Ullén, F. (2016). Investigating cognitive transfer within the framework of music practice: Genetic pleiotropy rather than causality. Developmental Science, 19(3), 504512. http://dx.doi.org/10.1111/desc.12306Google Scholar
Muller, M., Sigurdsson, S., Kjartansson, O., et al. (2014). Birth size and brain function 75 years later. Pediatrics, 134(4), 761770. http://dx.doi.org/10.1542/peds.2014-1108Google Scholar
Ngandu, T., Lehtisalo, J., Solomon, A., et al. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet, 385(9984), 22552263. http://dx.doi.org/10.1016/S0140-6736(15)60461-5Google Scholar
Nyberg, L., & Pudas, S. (2019). Successful memory aging. Annual Review of Psychology, 70, 219243. http://dx.doi.org/10.1146/annurev-psych-010418-103052Google Scholar
Nyberg, L., Sandblom, J., Jones, S., et al. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences USA, 100(23), 1372813733. http://dx.doi.org/10.1073/pnas.1735487100Google Scholar
Pietschnig, J., & Voracek, M. (2015). One century of global IQ gains: A formal meta-analysis of the Flynn effect (1909–2013). Perspectives on Psychological Science, 10(3), 282306. http://dx.doi.org/10.1177/1745691615577701Google Scholar
Raz, N., Ghisletta, P., Rodrigue, K. M., Kennedy, K. M., & Lindenberger, U. (2010). Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. NeuroImage, 51(2), 501511. http://dx.doi.org/10.1016/j.neuroimage.2010.03.020Google Scholar
Raz, N., Lindenberger, U., Rodrigue, K. M., et al. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15(11), 16761689. http://dx.doi.org/10.1093/cercor/bhi044Google Scholar
Raznahan, A., Greenstein, D., Lee, N. R., Clasen, L. S., & Giedd, J. N. (2012). Prenatal growth in humans and postnatal brain maturation into late adolescence. Proceedings of the National Academy of Sciences USA, 109(28), 1136611371. http://dx.doi.org/10.1073/pnas.1203350109Google Scholar
Reitz, C., Tosto, G., Mayeux, R., & Luchsinger, J. A. (2012). Genetic variants in the fat and obesity associated (FTO) gene and risk of Alzheimer’s disease. PLoS One, 7(12), e50354. http://dx.doi.org/10.1371/journal.pone.0050354Google Scholar
Resnick, S. M., Pham, D. L., Kraut, M. A., Zonderman, A. B., & Davatzikos, C. (2003). Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain. Journal of Neuroscience, 23(8), 32953301. http://dx.doi.org/10.1523/JNEUROSCI.23-08-03295.2003CrossRefGoogle ScholarPubMed
Salthouse, T. A. (2016). Continuity of cognitive change across adulthood. Psychonomic Bulletin and Review, 23(3), 932939. http://dx.doi.org/10.3758/s13423-015-0910-8Google Scholar
Schaie, K. W. (1994). The course of adult intellectual development. American Psychologist, 49(4), 304313. http://dx.doi.org/10.1037/0003-066X.49.4.304Google Scholar
Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2, p. 27. http://dx.doi.org/10.3389/fnagi.2010.00027Google Scholar
Scholz, J., Klein, M. C., Behrens, T. E., & Johansen-Berg, H. (2009). Training induces changes in white-matter architecture. Nature Neuroscience, 12(11), 13701371. http://dx.doi.org/10.1038/nn.2412Google Scholar
Sexton, C. E., Walhovd, K. B., Storsve, A. B., et al. (2014). Accelerated changes in white matter microstructure during aging: A longitudinal diffusion tensor imaging study. Journal of Neuroscience, 34(46), 1542515436. http://dx.doi.org/10.1523/JNEUROSCI.0203-14.2014Google Scholar
Smith, A. D., Smith, S. M., De Jager, C. A., et al. (2010). Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: A randomized controlled trial. PLoS One, 5(9), e12244. http://dx.doi.org/10.1371/journal.pone.0012244Google Scholar
Storsve, A. B., Fjell, A. M., Tamnes, C. K., et al. (2014). Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: Regions of accelerating and decelerating change. Journal of Neuroscience, 34(25), 84888498. http://dx.doi.org/10.1523/JNEUROSCI.0391-14.2014CrossRefGoogle ScholarPubMed
Thompson, P. M. (2015). Cracking the brain’s genetic code. Proceedings of the National Academy of Sciences USA, 112(50), 1526915270. http://dx.doi.org/10.1073/pnas.1520702112Google Scholar
Tucker-Drob, E. M. (2011). Global and domain-specific changes in cognition throughout adulthood. Developmental Psychology, 47(2), 331343. http://dx.doi.org/10.1037/a0021361Google Scholar
Tucker-Drob, E. M., Brandmaier, A. M., & Lindenberger, U. (2019). Coupled cognitive changes in adulthood: A meta-analysis. Psychological Bulletin, 145(3), 273301. http://dx.doi.org/10.1037/bul0000179Google Scholar
Vemuri, P., Lesnick, T. G., Przybelski, S. A., et al. (2012). Effect of lifestyle activities on Alzheimer disease biomarkers and cognition. Annals of Neurology, 72(5), 730738. http://dx.doi.org/10.1002/ana.23665Google Scholar
Walhovd, K. B., Bjørnebekk, A., Haabrekke, K., et al. (2015). Child neuroanatomical, neurocognitive, and visual acuity outcomes with maternal opioid and polysubstance detoxification. Pediatric Neurology, 52(3), 326332. http://dx.doi.org/10.1016/j.pediatrneurol.2014.11.008Google Scholar
Walhovd, K. B., Fjell, A. M., Brown, T. T., et al. (2012a). Long-term influence of normal variation in neonatal characteristics on human brain development. Proceedings of the National Academy of Sciences USA, 109(49), 2008920094. http://dx.doi.org/10.1073/pnas.1208180109Google Scholar
Walhovd, K. B., Fjell, A. M., & Espeseth, T. (2014a). Cognitive decline and brain pathology in aging – need for a dimensional, lifespan and systems vulnerability view. Scandinavian Journal of Psychology, 55(3), 244254. http://dx.doi.org/10.1111/sjop.12120Google Scholar
Walhovd, K. B., Krogsrud, S. K., Amlien, I. K., et al. (2016). Neurodevelopmental origins of lifespan changes in brain and cognition. Proceedings of the National Academy of Sciences USA, 113(33), 93579362. http://dx.doi.org/10.1073/pnas.1524259113Google Scholar
Walhovd, K. B., Moe, V., Slinning, K., et al. (2007). Volumetric cerebral characteristics of children exposed to opiates and other substances in utero. NeuroImage, 36(4), 13311344. http://dx.doi.org/10.1016/j.neuroimage.2007.03.070Google Scholar
Walhovd, K. B., Moe, V., Slinning, K., et al. (2009). Effects of prenatal opiate exposure on brain development – a call for attention. Nature Reviews Neuroscience, 10(5), 390. http://dx.doi.org/10.1038/nrn2598-c1CrossRefGoogle Scholar
Walhovd, K. B., Storsve, A. B., Westlye, L. T., et al. (2014b). Blood markers of fatty acids and vitamin D, cardiovascular measures, body mass index, and physical activity relate to longitudinal cortical thinning in normal aging. Neurobiology of Aging, 35(5), 10551064. http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.011CrossRefGoogle ScholarPubMed
Walhovd, K. B., Tamnes, C. K., Østby, Y., Due-Tønnessen, P., & Fjell, A. M. (2012b). Normal variation in behavioral adjustment relates to regional differences in cortical thickness in children. European Child and Adolescent Psychiatry, 21(3), 133140. http://dx.doi.org/10.1007/s00787-012-0241-5CrossRefGoogle ScholarPubMed
Walhovd, K. B., Watts, R., Amlien, I., & Woodward, L. J. (2012c). Neural tract development of infants born to methadone-maintained mothers. Pediatric Neurology, 47(1), 16. http://dx.doi.org/10.1016/j.pediatrneurol.2012.04.008Google Scholar
Wenger, E., Schaefer, S., Noack, H., et al. (2012). Cortical thickness changes following spatial navigation training in adulthood and aging. NeuroImage, 59(4), 33893397. http://dx.doi.org/10.1016/j.neuroimage.2011.11.015Google Scholar
Westlye, L. T., Reinvang, I., Rootwelt, H., & Espeseth, T. (2012). Effects of APOE on brain white matter microstructure in healthy adults. Neurology, 79(19), 19611969. http://dx.doi.org/10.1212/WNL.0b013e3182735c9cGoogle Scholar
Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white: Neuroimaging changes in brain structure during learning. Nature Neuroscience, 15(4), 528536. http://dx.doi.org/10.1038/nn.3045Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×