Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T11:53:15.908Z Has data issue: false hasContentIssue false

30 - The Genetics of Cognitive Abilities

from Part IV - Cognitive, Social, and Biological Factors across the Lifespan

Published online by Cambridge University Press:  28 May 2020

Ayanna K. Thomas
Affiliation:
Tufts University, Massachusetts
Angela Gutchess
Affiliation:
Brandeis University, Massachusetts
Get access

Summary

Cognitive functions are highly heritable and polygenic, determined by many different genes. This chapter summarizes current knowledge regarding the genetic basis of cognitive abilities based on evidence from twin studies and behavioral genetic studies, focusing on single genes or polygenic scores. Given the focus of this book on aging, we also highlight differences of genetic influences on cognition across the adult life span, which contribute to the large interindividual differences in the decline of cognition in old age. In addition, we discuss the complex interplay between genetic and environmental factors in influencing cognition in adulthood and aging. Here, we focus on gene-environment interactions, gene-environment correlations, and epigenetic mechanisms, which likely account for some of the differential patterns in cognitive aging trajectories.

Type
Chapter
Information
The Cambridge Handbook of Cognitive Aging
A Life Course Perspective
, pp. 552 - 567
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, O. P., Schwab, S. G., Lautenschlager, N. T., et al. (2008). KIBRA genetic polymorphism influences episodic memory in later life, but does not increase the risk of mild cognitive impairment. Journal of Cellular and Molecular Medicine, 12(5A), 16721676. https://doi.org/10.1111/j.1582-4934.2008.00229.xGoogle Scholar
Barnett, J. H., Jones, P. B., Robbins, T. W., & Müller, U. (2007). Effects of the catechol-O-methyltransferase Val158Met polymorphism on executive function: a meta-analysis of the Wisconsin Card Sort Test in schizophrenia and healthy controls. Molecular Psychiatry, 12(5), 502509. https://doi.org/10.1038/sj.mp.4001973Google Scholar
Bell, J. T., & Spector, T. D. (2012). DNA methylation studies using twins: What are they telling us? Genome Biology, 13(10), 172. https://doi.org/10.1186/gb-2012-13-10-172Google Scholar
Belsky, D. W., Moffitt, T. E., Corcoran, D. L., et al. (2016). The genetics of success: How single-nucleotide polymorphisms associated with educational attainment relate to life-course development. Psychological Science, 27(7), 957972. https://doi.org/10.1177/0956797616643070CrossRefGoogle ScholarPubMed
Binder, D. K., & Scharfman, H. E. (2004). Mini review. Growth Factors, 22(3), 123131. https://doi.org/10.1080/08977190410001723308Google Scholar
Boots, E. A., Schultz, S. A., Clark, L. R., et al. (2017). BDNF Val66Met predicts cognitive decline in the Wisconsin Registry for Alzheimer’s Prevention. Neurology, 88(22), 20982106. https://doi.org/10.122/WNL.0000000000003980Google Scholar
Chang, L., Wang, Y., Ji, H., et al. (2014). Elevation of peripheral BDNF promoter methylation links to the risk of Alzheimer’s disease. PLoS One, 9(11), e110773. https://doi.org/10.1371/journal.pone.0110773Google Scholar
Davies, G., Tenesa, A., Payton, A., et al. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16(10), 9961005. https://doi.org/10.1038/mp.2011.85Google Scholar
Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11(3), 201211. https://doi.org/10.1038/nrn2793Google Scholar
Degerman, S., Josefsson, M., Nordin Adolfsson, A., et al. (2017). Maintained memory in aging is associated with young epigenetic age. Neurobiology of Aging, 55, 167171. https://doi.org/10.1016/j.neurobiolaging.2017.02.009Google Scholar
Di Benedetto, S., Müller, L., Wenger, E., Düzel, S., & Pawelec, G. (2017). Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neuroscience and Biobehavioral Reviews, 75, 114128. https://doi.org/10.1016/j.neubiorev.2017.01.044Google Scholar
Di Francesco, A., Arosio, B., Falconi, A., et al. (2015). Global changes in DNA methylation in Alzheimer’s disease peripheral blood mononuclear cells. Brain, Behavior, and Immunity, 45, 139144. https://doi.org/10.1016/j.bbi.2014.11.002Google Scholar
Egan, M. F., Kojima, M., Callicott, J. H., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2), 257269. https://doi.org/10.1016/s0092-8674(03)00035-7Google Scholar
Elliott, M. L., Belsky, D. W., Anderson, K., et al. (2018). A polygenic score for higher educational attainment is associated with larger brains. bioRxiv, 287490. https://doi.org/10.1101/287490Google Scholar
Erickson, K. I., Banducci, S. E., Weinstein, A. M., et al. (2013). The brain-derived neurotrophic factor Val66Met polymorphism moderates an effect of physical activity on working memory performance. Psychological Science, 24(9), 17701779. https://doi.org/10.1177/0956797613480367Google Scholar
Ferencz, B., & Gerritsen, L. (2015). Genetics and underlying pathology of dementia. Neuropsychology Review, 25(1), 113124. https://doi.org/10.1007/s11065-014-9276-3Google Scholar
Ferencz, B., Laukka, E. J., Welmer, A.-K., et al. (2014). The benefits of staying active in old age: Physical activity counteracts the negative influence of PICALM, BIN1, and CLU risk alleles on episodic memory functioning. Psychology and Aging, 29(2), 440449. https://doi.org/10.1037/a0035465Google Scholar
Fernandes, J., Arida, R. M., & Gomez-Pinilla, F. (2017). Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neuroscience and Biobehavioral Reviews, 80, 443456. https://doi.org/10.1016/j.neubiorev.2017.06.012Google Scholar
Finkel, D., & Reynolds, C. A. (2009). Behavioral genetic investigations of cognitive aging. In Kim, Y. K (Ed.), Handbook of behavior genetics (pp. 101112). New York: Springer.Google Scholar
Fratiglioni, L., Mangialasche, F., & Qiu, C. (2010). Brain aging: Lessons from community studies. Nutrition Reviews, 68(Suppl. 2), 119127. https://doi.org/10.1111/j.1753-4887.2010.00353.xGoogle Scholar
Freytag, V., Carrillo-Roa, T., Milnik, A., et al. (2017). A peripheral epigenetic signature of immune system genes is linked to neocortical thickness and memory. Nature Communications, 8, 15193. https://doi.org/10.1038/ncomms15193Google Scholar
Getz, G. S., & Reardon, C. A. (2009). Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. Journal of Lipid Research, 50, S156S161. https://doi.org/10.1194/jlr.R800058-JLR200Google Scholar
Ghisletta, P., Bäckman, L., Bertram, L., et al. (2014). The Val/Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene predicts decline in perceptual speed in older adults. Psychology and Aging, 29(2), 384392. https://doi.org/10.1037/a0035201CrossRefGoogle ScholarPubMed
Grady, D. L., Thanos, P. K., Corrada, M. M., et al. (2013). DRD4 genotype predicts longevity in mouse and human. Journal of Neuroscience, 33(1), 286291. https://doi.org/10.1523/JNEUROSCI.3515-12.2013Google Scholar
Green, A. E., Munafo, M. R., DeYoung, C. G., et al. (2008). Using genetic data in cognitive neuroscience: From growing pains to genuine insights. Nature Reviews Neuroscience, 9(9), 710720. https://doi.org/10.1038/nrn2461Google Scholar
Growdon, J. H., Locascio, J. J., Corkin, S., Gomez-Isla, T., & Hyman, B. T. (1996). Apolipoprotein E genotype does not influence rates of cognitive decline in Alzheimer’s disease. Neurology, 47(2), 444448. https://doi.org/10.1212/WNL.47.2.444Google Scholar
Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19(6), 371384. https://doi.org/10.1038/s41576-018-0004-3CrossRefGoogle ScholarPubMed
Humphries, A. D., Streimann, I. C., Stojanovski, D., et al. (2005). Dissection of the mitochondrial import and assembly pathway for human Tom40. Journal of Biological Chemistry, 280(12), 1153511543. https://doi.org/10.1074/jbc.M413816200Google Scholar
Johnson, W., Deary, I. J., McGue, M., & Christensen, K. (2009). Genetic and environmental transactions linking cognitive ability, physical fitness, and education in late life. Psychology and Aging, 24, 4862. https://doi.org/10.1037/a0013929Google Scholar
Jones, M. J., Goodman, S. J., & Kobor, M. S. (2015). DNA methylation and healthy human aging. Aging Cell, 14(6), 924932. https://doi.org/10.1111/acel.12349Google Scholar
Kambeitz, J. P., Bhattacharyya, S., Kambeitz-Ilankovic, L. M., et al. (2012). Effect of BDNF val66met polymorphism on declarative memory and its neural substrate: A meta-analysis. Neuroscience and Biobehavioral Reviews, 36(9), 21652177. https://doi.org/10.1016/j.neubiorev.2012.07.002Google Scholar
Kauppi, K., Nilsson, L.-G., Adolfsson, R., Eriksson, E., & Nyberg, L. (2011). KIBRA polymorphism is related to enhanced memory and elevated hippocampal processing. Journal of Neuroscience, 31(40), 1421814222. https://doi.org/10.1523/JNEUROSCI.3292-11.2011Google Scholar
Li, S.-C., Chicherio, C., Nyberg, L., et al. (2010). Ebbinghaus revisited: Influences of the BDNF Val66Met polymorphism on backward serial recall are modulated by human aging. Journal of Cognitive Neuroscience, 22(10), 21642173. https://doi.org/10.1162/jocn.2009.21374Google Scholar
Lindenberger, U., Nagel, I. E., Chicherio, C., et al. (2008). Age-related decline in brain resources modulates genetic effects on cognitive functioning. Frontiers in Neuroscience, 2(2), 234244. https://doi.org/10.3389/neuro.01.039.2008Google Scholar
Liu, F., Pardo, L. M., Schuur, M., et al. (2010). The apolipoprotein E gene and its age-specific effects on cognitive function. Neurobiology of Aging, 31(10), 18311833. https://doi.org/10.1016/j.neurobiolaging.2008.09.015CrossRefGoogle ScholarPubMed
Liu, J., Zhao, W., Ware, E. B., et al. (2018). DNA methylation in the APOE genomic region is associated with cognitive function in African Americans. BMC Medical Genomics, 11, 43. https://doi.org/10.1186/s12920-018-0363-9Google Scholar
Logue, M. W., Panizzon, M. S., Elman, J. A., et al. (2018). Use of an Alzheimer’s disease polygenic risk score to identify mild cognitive impairment in adults in their 50s. Molecular Psychiatry, 24, 421430. https://doi.org/10.1038/s41380-018-0030-8Google Scholar
Lotta, T., Vidgren, J., Tilgmann, C., et al. (1995). Kinetics of human soluble and membrane-bound catechol O- methyltransferase: A revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry, 34(13), 42024210. https://doi.org/10.1021/bi00013a008Google Scholar
Ma, Y., Smith, C. E., Lai, C.-Q., et al. (2015). Genetic variants modify the effect of age on APOE methylation in the Genetics of Lipid Lowering Drugs and Diet Network study. Aging Cell, 14(1), 4959. https://doi.org/10.1111/acel.12293Google Scholar
MacDonald, S. W. S., Karlsson, S., Fratiglioni, L., & Bäckman, L. (2011). Trajectories of cognitive decline following dementia onset: What accounts for variation in progression? Dementia and Geriatric Cognitive Disorders, 31(3), 202209. https://doi.org/10.1159/000325666Google Scholar
Mahley, R. W., Weisgraber, K. H., & Huang, Y. (2009). Apolipoprotein E: Structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. Journal of Lipid Research, 50, S183S188. https://doi.org/10.1194/jlr.R800069-JLR200Google Scholar
Muse, J., Emery, M., Sambataro, F., et al. (2014). WWC1 genotype modulates age-related decline in episodic memory function across the adult life span. Biological Psychiatry, 75(9), 693700. https://doi.org/10.1016/j.biopsych.2013.09.036Google Scholar
Nagata, T., Kobayashi, N., Ishii, J., et al. (2015). Association between DNA methylation of the BDNF promoter region and clinical presentation in Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders EXTRA, 5(1), 6473. https://doi.org/10.1159/000375367Google Scholar
Nikolova, Y. S., & Hariri, A. R. (2015). Can we observe epigenetic effects on human brain function? Trends in Cognitive Sciences, 19(7), 366373. https://doi.org/10.1016/j.tics.2015.05.003Google Scholar
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292305. https://doi.org/10.1016/j.tics.2012.04.005Google Scholar
Papassotiropoulos, A., & de Quervain, D. J. F. (2011). Genetics of human episodic memory: Dealing with complexity. Trends in Cognitive Sciences, 15(9), 381387. https://doi.org/10.1016/j.tics.2011.07.005Google Scholar
Papassotiropoulos, A., Stephan, D. A., Huentelman, M. J., et al. (2006). Common Kibra alleles are associated with human memory performance. Science, 314(5798), 475478. https://doi.org/10.1126/science.1129837Google Scholar
Papenberg, G., Becker, N., Ferencz, B., et al. (2017). Dopamine receptor genes modulate associative memory in old age. Journal of Cognitive Neuroscience, 29(2), 245253. https://doi.org/10.1162/jocn_a_01048Google Scholar
Papenberg, G., Lindenberger, U., & Bäckman, L. (2015a). Aging-related magnification of genetic effects on cognitive and brain integrity. Trends in Cognitive Sciences, 19(9), 506514. https://doi.org/10.1016/j.tics.2015.06.008Google Scholar
Papenberg, G., Salami, A., Persson, J., Lindenberger, U., & Bäckman, L. (2015b). Genetics and functional imaging: Effects of APOE, BDNF, COMT, and KIBRA in aging. Neuropsychology Review, 25(1), 4762. https://doi.org/10.1007/s11065-015-9279-8Google Scholar
Payton, A. (2009). The impact of genetic research on our understanding of normal cognitive ageing: 1995 to 2009. Neuropsychology Review, 19(4), 451477. https://doi.org/10.1007/s11065-009-9116-zGoogle Scholar
Penner, M. R., Roth, T. L., Chawla, M. K., et al. (2011). Age-related changes in Arc transcription and DNA methylation within the hippocampus. Neurobiology of Aging, 32(12), 21982210. https://doi.org/10.1016/j.neurobiolaging.2010.01.009CrossRefGoogle ScholarPubMed
Plomin, R., & Deary, I. (2015). Genetics and intelligence differences: Five special findings. Molecular Psychiatry, 20, 98108. https://doi.org/10.1038/mp.2014.105Google Scholar
Plomin, R., & von Stumm, S. (2018). The new genetics of intelligence. Nature Reviews Genetics, 19, 148159. http://dx.doi.org/10.1038/nrg.2017.104Google Scholar
Qin, X.-Y., Cao, C., Cawley, N. X., et al. (2016). Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: A meta-analysis study (N=7277). Molecular Psychiatry, 22, 312320. http://dx.doi.org/10.1038/mp.2016.62Google Scholar
Rawle, M. J., Davis, D., Bendayan, R., et al. (2018). Apolipoprotein-E (Apoe) ε4 and cognitive decline over the adult life course. Translational Psychiatry, 8(1), 18. https://doi.org/10.1038/s41398-017-0064-8Google Scholar
Reynolds, C. A., & Finkel, D. (2015). A meta-analysis of heritability of cognitive aging: Minding the “missing heritability” gap. Neuropsychology Review, 25(1), 97112. https://doi.org/10.1007/s11065-015-9280-2Google Scholar
Reynolds, C. A., Finkel, D., McArdle, J. J., et al. (2005). Quantitative genetic analysis of latent growth curve models of cognitive abilities in adulthood. Developmental Psychology, 41, 316. https://doi.org/10.1037/0012-1649.41.1.3Google Scholar
Roses, A. D., Lutz, M. W., Amrine-Madsen, H., et al. (2010). A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics Journal, 10(5), 375384. https://doi.org/10.1038/tpj.2009.69Google Scholar
Sanchez, M. M., Das, D., Taylor, J. L., et al. (2011). BDNF polymorphism predicts the rate of decline in skilled task performance and hippocampal volume in healthy individuals. Translational Psychiatry, 1, e51. https://doi.org/10.1038/tp.2011.47Google Scholar
Sapkota, S., Bäckman, L., & Dixon, R. A. (2017). Executive function performance and change in aging is predicted by apolipoprotein E, intensified by catechol-O-methyltransferase and brain-derived neurotrophic factor, and moderated by age and lifestyle. Neurobiology of Aging, 52, 8189. https://doi.org/10.1016/j.neurobiolaging.2016.12.022CrossRefGoogle ScholarPubMed
Sapkota, S., & Dixon, R. A. (2018). A network of genetic effects on non-demented cognitive aging: Alzheimer’s genetic risk (CLU + CR1 + PICALM) intensifies cognitive aging genetic risk (COMT + BDNF) selectively for APOEɛ4 carriers. Journal of Alzheimer’s Disease, 62(2), 887900. https://doi.org/10.3233/JAD-170909Google Scholar
Schneider, A., Huentelman, M. J., Kremerskothen, J., et al. (2010). KIBRA: A new gateway to learning and memory? Frontiers in Aging Neuroscience, 2, 4. https://doi.org/10.3389/neuro.24.004.2010Google Scholar
Schuck, N. W., Frensch, P. A., Schjeide, B. M. M., et al. (2013). Effects of aging and dopamine genotypes on the emergence of explicit memory during sequence learning. Neuropsychologia, 51(13), 27572769. https://doi.org/10.1016/j.neuropsychologia.2013.09.009Google Scholar
Schuck, N. W., Petok, J. R., Meeter, M., et al. (2018). Aging and a genetic KIBRA polymorphism interactively affect feedback- and observation-based probabilistic classification learning. Neurobiology of Aging, 61, 3643. https://doi.org/10.1016/j.neurobiolaging.2017.08.026Google Scholar
Stickel, A., Kawa, K., Walther, K., et al. (2017). Age-modulated associations between KIBRA, brain volume, and verbal memory among healthy older adults. Frontiers in Aging Neuroscience, 9, 431. https://doi.org/10.3389/fnagi.2017.00431Google Scholar
Szekely, A., Kotyuk, E., Bircher, J., et al. (2016). Association between age and the 7 repeat allele of the dopamine D4 receptor gene. PLoS One, 11(12), e1067753. https://doi.org/10.1371/journal.pone.0167753Google Scholar
Talens, R. P., Christensen, K., Putter, H., et al. (2012). Epigenetic variation during the adult lifespan: Cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell, 11(4), 694703. https://doi.org/10.1111/j.1474-9726.2012.00835.xGoogle Scholar
Tucker-Drob, E. M., Reynolds, C. A., Finkel, D., & Pedersen, N. L. (2013). Shared and unique genetic and environmental influences on aging-related changes in multiple cognitive abilities. Developmental Psychology, 50(1), 152166. https://doi.org/10.1037/a0032468Google Scholar
Vemuri, P., Lesnick, T. G., Przybelski, S. A., et al. (2014). Association of lifetime intellectual enrichment with cognitive decline in the older population. JAMA Neurology, 71(8), 10171024. https://doi.org/10.1001/jamaneurol.2014.963Google Scholar
Vogler, C., Gschwind, L., Coynel, D., et al. (2014). Substantial SNP-based heritability estimates for working memory performance. Translational Psychiatry, 4(9), e438. https://doi.org/10.1038/tp.2014.81Google Scholar
Whalley, L. J., Deary, I. J., Starr, J. M., et al. (2008). n–3 Fatty acid erythrocyte membrane content, APOE ε4, and cognitive variation: An observational follow-up study in late adulthood. American Journal of Clinical Nutrition, 87(2), 449454. https://doi.org/10.1093/ajcn/87.2.449Google Scholar
Wilson, R. S., Barral, S., Lee, J. H., et al. (2012). Heritability of different forms of memory in the Late Onset Alzheimer’s Disease Family Study. Journal of Alzheimer’s Disease, 23(2), 249255. https://doi.org/10.3233/JAD-2010-101515.HeritabilityGoogle Scholar
Wisdom, N. M., Callahan, J. L., & Hawkins, K. A. (2011). The effects of apolipoprotein E on non-impaired cognitive functioning: A meta-analysis. Neurobiology of Aging, 32(1), 6374. https://doi.org/10.1016/j.neurobiolaging.2009.02.003Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×