Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T08:48:39.787Z Has data issue: false hasContentIssue false

5 - Spatial Skills, Reasoning, and Mathematics

from Part II - Science and Math

Published online by Cambridge University Press:  08 February 2019

John Dunlosky
Affiliation:
Kent State University, Ohio
Katherine A. Rawson
Affiliation:
Kent State University, Ohio
Get access

Summary

The purpose of this chapter is to evaluate the potential of leveraging mathematics learning based on the links between spatial thinking and mathematical learning. We discuss empirical evidence at various levels of analyses that suggest harnessing spatial skills could improve students' math learning and describe important avenues for future research in this important and growing area.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alibali, M. W. & DiRusso, A. A. (1999). The function of gesture in learning to count: More than keeping track. Cognitive Development, 14(1), 3756. https://doi.org/10.1016/s0885-2014(99)80017–3CrossRefGoogle Scholar
Amalric, M. & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians.Proceedings of the National Academy of Sciences, 113, 4909–4917. https://doi.org/10.1073/pnas.1603205113CrossRefGoogle ScholarPubMed
Ansari, D. & Lyons, I.M. (2016). Cognitive neuroscience and mathematics learning: How far have we come? Where do we need to go? ZDM Mathematics Education, 48, 379383. https://doi.org/10.1007/s11858-016–0782-zCrossRefGoogle Scholar
Ashcraft, M. H. (1996). Cognitive psychology and simple arithmetic: A review and summary of new directions. In Butterworth, B. (ed.), Mathematical cognition. Vol. 1 (pp. 334). Hove, UK: Psychology Press. https://doi.org/10.1037/0096–3445.130.2.224Google Scholar
Ashcraft, M. H. & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 243248. https://doi.org/10.1037/0096–3445.130.2.224Google Scholar
Baddeley, A. D. & Hitch, G. (1974). Working memory. In Bower, G. (ed.), Recent advances in learning and motivation Vol. 8 (pp. 4789). New York: Academic Press.Google Scholar
Barth, H. & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14(1), 125135. https://doi.org/10.1111/j.1467–7687.2010.00962.xGoogle Scholar
Barth, H., Slusser, E., Cohen, D., & Paladino, A. (2011). A sense of proportion: Commentary on Opfer, Siegler and Young. Developmental Science, 14(5), 12051206. https://doi.org/10.1111/j.1467–7687.2011.01081.xCrossRefGoogle Scholar
Battista, M. (1981). The interaction between two instructional treatments of algebraic structures and spatial-visualization ability. The Journal of Educational Research, 74(5), 337341. https://doi.org/10.1080/00220671.1981.10885326Google Scholar
Battista, M. (1990). Spatial visualization and gender differences in high school geometry. Journal for Research in Mathematics Education, 21(1), 4760. https://doi.org/10.2307/749456Google Scholar
Battista, M. T., Wheatley, G. H., & Talsma, G. (1982). The importance of spatial visualization and cognitive development for geometry learning in preservice elementary teachers. Journal for Research in Mathematics Education, 13(5), 332340. https://doi.org/10.2307/749007Google Scholar
Blajenkova, O., Kozhevnikov, M., & Motes, M. A. (2006). Object-spatial imagery: A new self-report imagery questionnaire. Applied Cognitive Psychology, 20(2), 239263. https://doi.org/10.1002/acp.1182Google Scholar
Blazhenkova, O., Becker, M., & Kozhevnikov, M. (2011). Object–spatial imagery and verbal cognitive styles in children and adolescents: Developmental trajectories in relation to ability. Learning and Individual Differences, 21(3), 281287. https://doi.org/10.1016/j.lindif.2010.11.012Google Scholar
Booth, J. L. & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41(6), 189201. https://doi.org/10.1037/0012–1649.41.6.189Google Scholar
Booth, J. L. & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 10161031. https://doi.org/10.1111/j.1467–8624.2008.01173.xCrossRefGoogle ScholarPubMed
Bremigan, E. G. (2005). An analysis of diagram modification and construction in students’ solutions to applied calculus problems. Journal for Research in Mathematics Education, 36(3), 248277.Google Scholar
Carey, S. (2009). The origin of concepts. Oxford: Oxford University Press.CrossRefGoogle Scholar
Casey, B. M., Dearing, E., Dulaney, A., Heyman, M., & Springer, R. (2014). Young girls’ spatial and arithmetic performance: The mediating role of maternal supportive interactions during joint spatial problem solving. Early Childhood Research Quarterly, 29(4), 636648. https://doi.org/10.1016/j.ecresq.2014.07.005CrossRefGoogle Scholar
Casey, M. B., Nuttall, R. L., & Pezaris, E. (1997). Mediators of gender differences in mathematics college entrance test scores: A comparison of spatial skills with internalized beliefs and anxieties. Developmental Psychology, 33(4), 669. http://dx.doi.org/10.1037/0012–1649.33.4.669Google Scholar
Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test-scores across diverse samples. Developmental Psychology, 31(4), 697705. https://doi.org/10.1037/0012–1649.31.4.697CrossRefGoogle Scholar
Castles, A., Rastle, K., & Nation, K. (2018). Ending the reading wars: Reading acquisition from novice to expert. Psychological Science in the Public Interest, 19(1), 551.Google Scholar
Caviola, S., Mammarella, I. C., Cornoldi, C., & Lucangeli, D. (2012). The involvement of working memory in children’s exact and approximate mental addition. Journal of Experimental Child Psychology, 112(2), 141160. https://doi.org/10.1016/j.jecp.2012.02.005CrossRefGoogle ScholarPubMed
Cheng, Y. L. & Mix, K. S. (2012). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 211. https://doi.org/10.1080/15248372.2012.725186Google Scholar
Cromley, J. G., Booth, J. L., Wills, T.W., Chang, B.L., Shipley, T.F., Zahner, W., Tran, N., & Madeja, M. (2017). Relation of spatial skills to high school calculus proficiency: A brief report. Mathematical Thinking and Learning, 19(1), 5568.CrossRefGoogle Scholar
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371396. https://doi.org/10.1037/0096–3445.122.3.371Google Scholar
Dehaene, S., Izard, V., Pica, P., & Spelke, E. (2006). Core knowledge of geometry in an Amazonian indigene group. Science, 311(5759), 381384.Google Scholar
Dehaene, S., Izard, V., Spelke, E., & Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in western and Amazonian indigene cultures. Science, 320(5880), 12171220. https://doi.org/10.1126/science.1156540Google Scholar
de Hevia, M. D. & Spelke, E. S. (2010). Number-space mapping in human infants. Psychological Science, 21(5), 653660. https://doi.org/10.1177/0956797610366091Google Scholar
Delgado, A. R. & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32(1), 2532. https://doi.org/10.1016/S0160-2896(03)00061–8Google Scholar
Duffy, S., Huttenlocher, J., & Levine, S. (2005). It is all relative: How young children encode extent. Journal of Cognition & Development, 6(1), 5163. https://doi.org/10.1207/s15327647jcd0601_4CrossRefGoogle Scholar
Ebersbach, M. (2015). Evidence for a spatial–numerical association in kindergartners using a number line task. Journal of Cognition and Development, 16(1), 118128. https://doi.org/10.1080/15248372.2013.805134Google Scholar
Ebersbach, M., Luwel, K., Frick, A., Onghena, P., & Verschaffel, L. (2008). The relationship between the shape of the mental number line and familiarity with numbers in 5- to 9-year old children: Evidence for a segmented linear model. Journal of Experimental Child Psychology, 99(1), 117. https://doi.org/10.1016/j.jecp.2007.08.006Google Scholar
Eccles, J., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J., & Midgley, C. (1983). Expectancies, values and academic behaviors. In Spence, J. T. (ed.), Achievement and achievement motives. San Francisco: W. H. Freeman.Google Scholar
Elliot, A. J. & Church, M. A. (1997). A hierarchical model of approach and avoidance achievement motivation. Journal of Personality and Social Psychology, 72(1), 218232. https://doi.org/10.1037/0022–3514.72.1.218Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307314. https://doi.org/10.1016/j.tics.2004.05.002Google Scholar
Frick, A. & Newcombe, N. S. (2012). Getting the big picture: Development of spatial scaling abilities. Cognitive Development, 27(3), 270282. https://doi.org/10.1016/j.cogdev.2012.05.004Google Scholar
Friedman, L. (1995). The space factor in mathematics: Gender differences. Review of Educational Research, 65(1), 2250.Google Scholar
Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Hamlett, C. L., Cirino, P. T., Changas, P. (2013). Improving at-risk learners’ understanding of fractions. Journal of Educational Psychology, 105(3), 683700. https://doi.org/10.1037/a0032446Google Scholar
Gathercole, S. E. & Pickering, S. J. (2000). Working memory deficits in children with low achievements in the national curriculum at 7 years of age. British Journal of Educational Psychology, 70(2), 177194. https://doi.org/10.1348/000709900158047Google Scholar
Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40(2), 177190. https://doi.org/10.1037/0012–1649.40.2.177Google Scholar
Geary, D. C., Hoard, M. K., Byrd-Craven, J., & Catherine DeSoto, M. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88(2), 121151. https://doi.org/10.1016/j.jecp.2004.03.002Google Scholar
Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78(4), 13431359. https://doi.org/10.1111/j.1467–8624.2007.01069.xGoogle Scholar
Giofrè, D., Mammarella, I. C., Ronconi, L., & Cornoldi, C. (2013). Visuospatial working memory in intuitive geometry, and in academic achievement in geometry. Learning and Individual Differences, 23, 114122. https://doi.org/10.1016/j.lindif.2012.09.012CrossRefGoogle Scholar
Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., Ebner, F., & Neuper, C. (2009). To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia, 47(2), 604608. https://doi.org/10.1016/j.neuropsychologia.2008.10.013Google Scholar
Grabner, R. H., Ansari, D., Reishofer, G., Stern, E., Ebner, F., & Neuper, C. (2007). Individual differences in mathematical competence predict parietal brain activation during mental calculation. NeuroImage, 38(2), 346356. https://doi.org/10.1016/j.neuroimage.2007.07.041CrossRefGoogle ScholarPubMed
Grissmer, D., Mashburn, A., Cottone, E., Brock, L., Murrah, W., Blodgett, J., Cameron, C. (2013). The efficacy of minds in motion on children’s development of executive function, visuo-spatial and math skills. Paper presented at the Society for Research in Educational Effectiveness Conference, Washington, DC.Google Scholar
Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 12291241. https://doi.org/10.1037/a0027433Google Scholar
Halberda, J. & Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 14571465. https://doi.org/10.1037/a0012682Google Scholar
Hambrick, D. Z., Libarkin, J. C., Petcovic, H. L., Baker, K. M., Elkins, J., Callahan, C. N., … LaDue, N. D. (2012). A test of the circumvention-of-limits hypothesis in scientific problem solving: The case of geological bedrock mapping. Journal of Experimental Psychology: General, 141(3), 397403. https://doi.org/10.1037/a0025927 and https://doi.org/10.1037/a0025927.supp (Supplemental)Google Scholar
Hamdan, N. & Gunderson, E. A. (2016). The number line is a critical spatial-numerical representation: Evidence from a fraction intervention. Developmental Psychology, https://doi.org/10.1037/dev0000252 and https://doi.org/10.1037/dev0000252.supp (Supplemental)Google Scholar
Hawes, Z., Moss, J., Caswell, B., Naqvi, S., & MacKinnon, S. (2017). Enhancing children’s spatial and numerical skills through a dynamic spatial approach to early geometry instruction: Effects of a 32-week intervention. Cognition and Instruction, 35(3), 236264. https://doi.org/10.1080/07370008.2017.1323902Google Scholar
Hawes, Z., Moss, J., Caswell, B., & Poliszczuk, D. (2015). Effects of mental rotation training on children’s spatial and mathematics performance: A randomized controlled study. Trends in Neuroscience and Education, 4(3), 6068. https://doi.org/10.1016/j.tine.2015.05.001Google Scholar
Heathcote, D. (1994). The role of visuo-spatial working memory in the mental addition of multi-digit addends. Current Psychology of Cognition, 13, 207245.Google Scholar
Hegarty, M. & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684689. https://doi.org/10.1037/0022–0663.91.4.684Google Scholar
Huttenlocher, J., Duffy, S., & Levine, S. (2002). Infants and toddlers discriminate amount: Are they measuring? Psychological Science, 13(3), 244.Google Scholar
Huttenlocher, J., Hedges, L. V., Corrigan, B., & Crawford, L. E. (2004). Spatial categories and the estimation of location. Cognition, 93(2), 7597. https://doi.org/10.1016/j.cognition.2003.10.006CrossRefGoogle ScholarPubMed
Huttenlocher, J., Hedges, L. V., & Vevea, J. L. (2000). Why do categories affect stimulus judgment? Journal of Experimental Psychology: General, 129(2), 220241. https://doi.org/10.1037/0096–3445.129.2.220Google Scholar
Huttenlocher, J., Jordan, N. C., & Levine, S. C. (1994). A mental model for early arithmetic. Journal of Experimental Psychology: General, 123(3), 284296. https://doi.org/10.1037/0096–3445.123.3.284Google Scholar
Huttenlocher, J., Newcombe, N., & Sandberg, E. H. (1994). The coding of spatial location in young children. Cognitive Psychology, 27(2), 115147. https://doi.org/10.1006/cogp.1994.1014Google Scholar
Jones, K. (2001). Spatial thinking and visualisation. In K. Jones, Teaching and learning geometry. (pp. 5556). London: Royal Society.Google Scholar
Jones, K. (2002). Issues in the teaching and learning of geometry. In Haggarty, L. (ed.), Aspects of teaching secondary mathematics: Perspectives on practice (pp. 121139). London: Routledge. https://doi.org/10.4324/9780203165874Google Scholar
Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2008). Development of number combination skill in the early school years: When do fingers help? Developmental Science, 11(5), 662668. https://doi.org/10.1111/j.1467–7687.2008.00715.xGoogle Scholar
Kaufmann, L., Wood, G., Rubinsten, O., & Henik, A. (2011). Meta-analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Developmental Neuropsychology, 36(6), 763787. https://doi.org/10.1080/87565641.2010.549884Google Scholar
Kim, D. & Opfer, J. E. (2017). A unified framework for bounded and unbounded numerical estimation. Developmental Psychology, 53(6), 1088. http://dx.doi.org/10.1037/dev0000305CrossRefGoogle ScholarPubMed
Kinach, B. M. (2012). Fostering spatial vs. metric understanding in geometry. Mathematics Teacher, 105(7), 534540.Google Scholar
Kirby, J. R. & Boulter, D. R. (1999). Spatial ability and transformational geometry. European Journal of Psychology of Education, 14(2), 283294. https://doi.org/10.1007/BF03172970Google Scholar
Krajewski, K. & Schneider, W. (2009). Exploring the impact of phonological awareness, visual–spatial working memory, and preschool quantity–number competencies on mathematics achievement in elementary school: Findings from a 3-year longitudinal study. Journal of Experimental Child Psychology, 103(4), 516531. http://dx.doi.org/10.1016/j.jecp.2009.03.009Google Scholar
Kyttälä, M., Aunio, P., Lehto, J. E., Van Luit, J. E. H., & Hautamäki, J. (2003). Visuospatial working memory and early numeracy. Educational and Child Psychology, 20(3), 6576.Google Scholar
Kyttälä, M. & Lehto, J. E. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology of Education, 23(1), 7794. https://doi.org/10.1007/BF03173141Google Scholar
Laski, E. V. & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78(6), 17231743. https://doi.org/10.1111/j.1467–8624.2007.01087.xCrossRefGoogle ScholarPubMed
Le Corre, M. (2014). Children acquire the later-greater principle after the cardinal principle. British Journal of Developmental Psychology, 32(2), 163177. https://doi.org/10.1111/bjdp.12029Google Scholar
Le Corre, M. & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395438. https://doi.org/10.1016/j.cognition.2006.10.005Google Scholar
LeFevre, J.-A., Jimenez Lira, C., Sowinski, C., Cankaya, O., Kamawar, D., & Skwarchuk, S.-L. (2013). Charting the role of the number line in mathematical development. Frontiers in Psychology, 4, 19. https://doi.org/10.3389/fpsyg.2013.00641Google Scholar
Logan, T. (2015). The influence of test mode and visuospatial ability on mathematics assessment performance. Mathematics Education Research Journal, 27(4), 423441. https://doi.org/10.1007/s13394-015–0143-1Google Scholar
Lourenco, S. F. & Longo, M. R. (2010). General magnitude representation in human infants. Psychological Science, 21(6), 878881. https://doi.org/10.1177/0956797610370158Google Scholar
Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ mathematics performance. British Journal of Educational Psychology, 87(2), 170186. https://doi.org/10.1111/bjep.12142Google Scholar
McKenzie, B., Bull, R., & Gray, C. (2003). The effects of phonological and visuospatial interference on children’s arithmetical performance. Educational and Child Psychology, 20(3), 93108.Google Scholar
Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D. C., & Menon, V. (2010). Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders. Learning and Individual Differences, 20(2), 101109. https://doi.org/10.1016/j.lindif.2009.08.004Google Scholar
Miller-Cotto, D., Booth, J. L., Chang, B. L., Cromley, J. G., Newcombe, N. S., & Williams, T. A. (under review). Sketching and verbal self-explanation: Do they help middle school children solve math and science problems?Google Scholar
Mix, K. S. & Cheng, Y. L. (2012). The relation between space and math: developmental and educational implications. In Benson, J. B. (ed.), Advances in child development and behavior, Vol. 42 (pp. 197243). New York: Elsevier.Google Scholar
Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 12061227.Google Scholar
Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H.-C. (2009). Children’s early mental number line: Logarithmic or decomposed linear? Journal of Experimental Child Psychology, 103(4), 503515. https://doi.org/10.1016/j.jecp.2009.02.006CrossRefGoogle ScholarPubMed
Möhring, W., Newcombe, N. S., & Frick, A. (2015). The relation between spatial thinking and proportional reasoning in preschoolers. Journal of Experimental Child Psychology, 132, 213220. https://doi.org/10.1016/j.jecp.2015.01.005Google Scholar
Möhring, W., Newcombe, N., Levine, S. C., & Frick, A. (2014). A matter of proportions: Spatial scaling is related to proportional reasoning in 4- and 5-year-olds. Paper presented at the Spatial Cognition Conference, Bremen, Germany.Google Scholar
Möhring, W., Newcombe, N., Levine, S. C., & Frick, A. (2016). Spatial proportional reasoning is associated with formal knowledge about fractions. Journal of Cognition and Development, 17(1), 6784. https://doi.org/10.1080/15248372.2014.996289CrossRefGoogle Scholar
Nath, S. & Szücs, D. (2014). Construction play and cognitive skills associated with the development of mathematical abilities in 7-year-old children. Learning and Instruction, 32(0), 7380. https://doi.org/10.1016/j.learninstruc.2014.01.006Google Scholar
Opfer, J. E. & Siegler, R. S. (2007). Representational change and children’s numerical estimation. Cognitive Psychology, 55(3), 169195. https://doi.org/10.1016/j.cogpsych.2006.09.002Google Scholar
Opfer, J. E., Siegler, R. S., & Young, C. J. (2011). The powers of noise-fitting: Reply to Barth and Paladino. Developmental Science, 14(5), 11941204. https://doi.org/10.1111/j.1467–7687.2011.01070.xGoogle Scholar
Opfer, J. E., Thompson, C. A., & Kim, D. (2016). Free versus anchored numerical estimation: A unified approach. Cognition, 149, 1117. https://doi.org/10.1016/j.cognition.2015.11.015Google Scholar
Peng, P., Namkung, J., Barnes, M., & Sun, C. (2016). A meta-analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. Journal of Educational Psychology, 108(4), 455. https://doi.org/10.1037/edu0000079Google Scholar
Piaget, J. & Inhelder, B. (1975). The origins of the idea of chance in children. New York: Norton.Google Scholar
Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41, 120. https://doi.org/10.1016/S0896-6273(04)00107–2Google Scholar
Pittalis, M. & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics, 75(2), 191212. https://doi.org/10.1007/s10649-010–9251-8Google Scholar
Rasmussen, C. & Bisanz, J. (2005). Representation and working memory in early arithmetic. Journal of Experimental Child Psychology, 91(2), 137157. https://doi.org/10.1016/j.jecp.2005.01.004Google Scholar
Rayner, K., Foorman, B., Perfetti, C., Pesetsky, D., & Seidenberg, M. (2001). How psychological science informs the teaching of reading. Psychological Science in the Public Interest, 2(2), 3174. https://doi.org/10.1111/1529–1006.00004Google Scholar
Reuhkala, M. (2001). Mathematical skills in ninth-graders: Relationship with visuo-spatial abilities and working memory. Educational Psychology, 21(4), 387399. https://doi.org/10.1080/01443410120090786Google Scholar
Royal Society and JMC (Joint Mathematical Council). (2001), Teaching and Learning Geometry 11–19. London: Royal Society and JMC.Google Scholar
Rugani, R & de Hevia, M.-D. (2017). Number-space associations without language: Evidence from 4 preverbal human infants and non-human animal species. Psychonomic Bulletin & Review, 24, 352369.Google Scholar
Samuels, J. (2010). The use of technology and visualization in calculus instruction (Unpublished doctoral dissertation). Teachers College, New York.Google Scholar
Saxe, G. B., Diakow, R., & Gearhart, M. (2013). Towards curricular coherence in integers and fractions: A study of the efficacy of a lesson sequence that uses the number line as the principal representational context. ZDM Mathematics Journal, 45(3), 343364. https://doi.org/10.1007/s11858-012–0466-2Google Scholar
Sekuler, R. & Mierkiewicz, D. (1977). Children’s judgments of numerical inequality. Child Development, 48(2), 630633. https://doi.org/10.2307/1128664Google Scholar
Sella, F., Berteletti, I., Lucangeli, D., & Zorzi, M. (2017). Preschool children use space, rather than counting, to infer the numerical magnitude of digits: Evidence for a spatial mapping principle. Cognition, 158, 5667. http://dx.doi.org/10.1016/j.cognition.2016.10.010Google Scholar
Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604614. https://doi.org/10.1037/0022–0663.93.3.604Google Scholar
Shepard, R. N. & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701702.Google Scholar
Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective?. Psychological Bulletin, 138(4), 628–154.Google Scholar
Siegler, R. S. (2009). Improving the numerical understanding of children from low-income families. Child Development Perspectives, 3(2), 118124. https://doi.org/10.1111/j.1750–8606.2009.00090.xGoogle Scholar
Siegler, R. S. & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428444. https://doi.org/10.1111/j.1467–8624.2004.00684.xGoogle Scholar
Siegler, R. S. & Booth, J. L. (2005). Development of numerical estimation. In Campbell, J. I. D. (ed.), Handbook of mathematical cognition (pp. 197212). New York: Psychology Press.Google Scholar
Siegler, R. S. & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237243. https://doi.org/10.1111/1467–9280.02438Google Scholar
Siegler, R. S. & Ramani, G. B. (2008). Playing linear numerical board games promotes low-income children’s numerical development. Developmental Science, 11(5), 655661. https://doi.org/10.1111/j.1467–7687.2008.00714.xGoogle Scholar
Siegler, R. S. & Ramani, G. B. (2009). Playing linear number board games – but not circular ones – improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101(3), 545560. https://doi.org/10.1037/a0014239Google Scholar
Slusser, E. B., Santiago, R. T., & Barth, H. C. (2013). Developmental change in numerical estimation. Journal of Experimental Psychology: General, 142(1), 193208. https://doi.org/10.1037/a0028560Google Scholar
Sorby, S., Casey, B., Veurink, N., & Dulaney, A. (2013). The role of spatial training in improving spatial and calculus performance in engineering students. Learning and Individual Differences, 26, 2029. https://doi.org/10.1016/j.lindif.2013.03.010Google Scholar
Soto-Calvo, E., Simmons, F. R., Willis, C., & Adams, A.-M. (2015). Identifying the cognitive predictors of early counting and calculation skills: Evidence from a longitudinal study. Journal of Experimental Child Psychology, 140, 1637. https://doi.org/10.1016/j.jecp.2015.06.011Google Scholar
Spelke, E. S. & Tsivkin, S. (2001). Language and number: A bilingual training study. Cognition, 78, 4588.Google Scholar
Spence, I. & Krizel, P. (1994). Children’s perception of proportion in graphs. Child Development, 65(4), 11931213. https://doi.org/10.2307/1131314CrossRefGoogle Scholar
Stieff, M. (2007). Mental rotation and diagrammatic reasoning in science. Learning and Instruction, 17(2), 219234. https://doi.org/10.1016/j.learninstruc.2007.01.012Google Scholar
Tolar, T. D., Lederberg, A. R., & Fletcher, J. M. (2009) A structural model of algebra achievement: Computational fluency and spatial visualisation as mediators of the effect of working memory on algebra achievement. Educational Psychology, 29(2), 239266. https://doi.org/10.1080/01443410802708903Google Scholar
Trbovich, P. & LeFevre, J. A. (2003). Phonological and visual working memory in mental addition. Memory and Cognition, 31(5), 738745. https://doi.org/10.3758/bf03196112Google Scholar
Trezise, K. & Reeve, R. A. (2014). Working memory, worry, and algebraic ability. Journal of Experimental Child Psychology, 121, 120136.Google Scholar
Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. In Coxford, A. (ed.), Ideas of algebra, K-12 (pp. 819). Reston, VA: NCTM.Google Scholar
Uttal, D. H. & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why, and how? Psychology of Learning and Motivation, 57, 147181. https://doi.org/10.1016/B978-0–12-394293–7.00004–2Google Scholar
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L. Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139, 352402.Google Scholar
Vasilyeva, M. & Huttenlocher, J. (2004). Early development of scaling ability. Developmental Psychology, 40(5), 682690. https://doi.org/10.1037/0012–1649.40.5.682Google Scholar
Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2017). Links between spatial and mathematical skills across the preschool years [Monograph]. Monographs of the Society for Research in Child Development, 82,(1), Serial Number 124.Google Scholar
Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101, 817835. https://doi.org/10.1037/a0016127Google Scholar
Weckbacher, L. M. & Okamoto, Y. (2014). Mental rotation ability in relation to self-perceptions of high school geometry. Learning and Individual Differences, 30, 5863. https://doi.org/10.1016/j.lindif.2013.10.007Google Scholar
Xenidou-Dervou, I., van der Schoot, M., & van Lieshout, E. C. D. M. (2015). Working memory and number line representations in single-digit addition: Approximate versus exact, nonsymbolic versus symbolic. The Quarterly Journal of Experimental Psychology, 68(6), 11481167. https://doi.org/10.1080/17470218.2014.977303CrossRefGoogle ScholarPubMed
Ye, A., Resnick, I., Hansen, N., Rodrigues, J., Rinne, L., & Jordan, N. C. (2016). Pathways to fraction learning: Numerical abilities mediate the relation between early cognitive competencies and later fraction knowledge. Journal of Experimental Child Psychology, 152, 242263. http://dx.doi.org/10.1016/j.jecp.2016.08.001Google Scholar
Zacks, J. M. (2007). Neuroimaging studies of mental rotation: A meta-analysis and review. Journal of Cognitive Neuroscience, 20(1), 119. https://doi.org/10.1162/jocn.2008.20013Google Scholar
Zorzi, M., Priftis, K., & Umilta, C. (2002). Brain damage: Neglect disrupts the mental number line. Nature, 417, 138139. https://doi.org/10.1038/417138aGoogle Scholar
Zuccheri, L. & Zudini, V. (2014). History of teaching calculus. In Karp, A. & Schubring, G. (eds.), Handbook on the history of mathematics education (pp. 493513). New York: Springer .Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×