Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T15:42:59.665Z Has data issue: false hasContentIssue false

27 - Perceptual Categorization in Pigeons

from Part V - Numerical and Quantitative Abilities

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

This chapter reviews research on visual categorization in pigeons including (1) basic-level categories, members of which are perceptually similar to each other (e.g., car or chair), (2) subordinate-level categories representing a subclass of a basic level category (e.g.,office chair or sports car), and (3) superordinate-level categories comprising several basic-level categories (e.g., furniture or vehicle).Current research convincingly demonstrates pigeons’ ability to form these categories. Moreover, pigeons’ basic-level categories appear to be similar to those of humans. However, the extent of similarity between superordinate-level and subordinate-level categories in pigeons and humans is not yet clear.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Astley, S. L. & Wasserman, E. A. (1992). Categorical discrimination and generalization in pigeons: All negative stimuli are not created equal. Journal of Experimental Psychology: Animal Behavior Processes, 18(2), 193207.Google Scholar
Astley, S. L. & Wasserman, E. A. (1999). Superordinate category formation in pigeons: Association with a common delay or probability of food reinforcement makes perceptually dissimilar stimuli functionally equivalent. Journal of Experimental Psychology: Animal Behavior Processes, 25(4), 415432. https://doi.org/10.1037/0097-7403.25.4.415Google Scholar
Astley, Suzette L., Peissig, Jessie J., & Wasserman, Edward A. (2001). Superordinate categorization via learned stimulus equivalence: Quantity of reinforcement, hedonic value, and the nature of the mediator. Journal of Experimental Psychology: Animal Behavior Processes, 27(3), 252268. https://doi.org/10.1037/0097-7403.27.3.252Google Scholar
Aust, U. & Huber, L. (2001). The role of item- and category-specific information in the discrimination of people versus nonpeople images by pigeons. Animal Learning and Behavior, 29(2), 107119.Google Scholar
Aust, U. & Huber, L. (2002). Target-defining features in a “people-present/people-absent” discrimination task by pigeons. Animal Learning and Behavior, 30(2), 165176.CrossRefGoogle Scholar
Aust, U. & Huber, L. (2003). Elemental versus configural perception in a people-present/people-absent discrimination task by pigeons. Learning and Behavior, 31(3), 213224.Google Scholar
Aust, U. & Huber, L. (2010). The role of skin-related information in pigeons’ categorization and recognition of humans in pictures. [Article]. Vision Research, 50(19), 19411948. doi: 10.1016/j.visres.2010.07.012Google Scholar
Azizi, A. H., Pusch, R., Koenen, C., Klatt, S., Broker, F., Thiele, S., … Cheng, S. (2019). Emerging category representation in the visual forebrain hierarchy of pigeons (Columba livia). [Article]. Behavioural Brain Research, 356, 423434. doi: 10.1016/j.bbr.2018.05.014Google Scholar
Belguermi, A., Bovet, D., Pascal, A., Prévot-Julliard, A.-C., Jalme, M. S., Rat-Fischer, L., & Leboucher, G. (2011). Pigeons discriminate between human feeders. Animal Cognition, 14(6), 909914. doi: http://dx.doi.org/10.1007/s10071-011-0420-7Google Scholar
Bhatt, R. S., Wasserman, E. A., Reynolds, W. F., & Knauss, K. S. (1988). Conceptual behavior in pigeons: Categorization of both familiar and novel examples from four classes of natural and artifical stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 14(3), 219234.Google Scholar
Castro, L. & Wasserman, E. A. (2017). Feature predictiveness and selective attention in pigeons’ categorization learning. Journal of Experimental Psychology: Animal Learning and Cognition, 43(3), 231242. doi: http://dx.doi.org/10.1037/xan0000146Google Scholar
Cerella, J. (1979). Visual classes and natural categories in the pigeon. Journal of Experimental Psychology: Human Perception and Performance, 5(1), 6877.Google Scholar
Cook, R. G., Levison, D. G., Gillet, S. R., & Blaisdell, A. P. (2005). Capacity and limits of associative memory in pigeons. Psychonomic Bulletin and Review, 12(2), 350358.CrossRefGoogle ScholarPubMed
Cook, R. G., Wright, A. A., & Drachman, E. E. (2013). Categorization of birds, mammals, and chimeras by pigeons. Behavioural Processes, 93, 98110. doi: 10.1016/j.beproc.2012.11.006CrossRefGoogle ScholarPubMed
Dittrich, L., Adam, R., Unver, E., & Güntürkün, O. (2010). Pigeons identify individual humans but show no sign of recognizing them in photographs. Behavioural Processes, 83(1), 8289. doi: http://dx.doi.org/10.1016/j.beproc.2009.10.006CrossRefGoogle ScholarPubMed
Ellis, A. E. & Oakes, L. M. (2006). Infants flexibly use different dimensions to categorize objects. Developmental Psychology, 42(6), 10001011. doi: http://dx.doi.org/10.1037/0012-1649.42.6.1000CrossRefGoogle ScholarPubMed
Frank, A. J. & Wasserman, E. A. (2005). Associative symmetry in the pigeon after successive matching‐to‐sample training. Journal of the Experimental Analysis of Behavior, 84, 147165https://doi.org/10.1901/jeab.2005.115-04Google Scholar
Ghosh, N., Lea, S. E. G., & Noury, M. (2004). Transfer to intermediate forms following concept discrimination by pigeons: Chimeras and morphs. Journal of Experimental Analysis of Behavior, 82(2), 125141.Google Scholar
Gibson, B. M., Wasserman, E. A., Gosselin, F., & Schyns, P. G. (2005). Applying Bubbles to localize features that control pigeons’ visual discrimination behavior. Journal of Experimental Psychology: Animal Behavior Processes, 31(3), 376382.Google Scholar
Goto, K., Lea, S. E. G., Wills, A. J., & Milton, F. (2011). Interpreting the effects of image manipulation on picture perception in pigeons (Columba livia) and humans (Homo sapiens). Journal of Comparative Psychology, 125(1), 4860. doi: 10.1037/a0020791 10.1037/a0020791.supp (Supplemental)Google Scholar
Herrnstein, R. J. & de Villiers, P. A. (1980). Fish as Natural Category for People and Pigeons. In Bower, G. H. (Ed.), The Psychology of Learning and Motivation: Advances in Research and Theory Vol. 14, (5995), New York: Academic Press. (Reprinted from: IN FILE).Google Scholar
Herrnstein, R. J. & Loveland, D. H. (1964). Complex visual concept in the pigeon. Science, 146(3643), 549551.Google Scholar
Herrnstein, R. J., Loveland, D. H., & Cable, C. (1976). Natural concepts in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 2(4), 285302.Google Scholar
Huber, L. & Lenz, R. (1993). A test of the linear feature model of polymorphous concept discrimination with pigeons. Quarterly Journal of Experimental Psychology, 46B(1), 118.Google Scholar
Huber, L. & Lenz, R. (1996). Categorization of prototypical stimulus classes by pigeons. Quarterly Journal of Experimental Psychology, 49B (2), 111133.Google Scholar
Huber, L., Troje, N. F., Loidolt, M., Aust, U., & Grass, D. (2000). Natural categorization through multiple feature learning in pigeons. Quarterly Journal of Experimental Psychology, 53B(4), 341357.Google Scholar
Jitsumori, M. (1993). Category discrimination of artificial polymorphous stimuli based on feature learning. Journal of Experimental Psychology: Animal Behavior Processes, 19(3), 244254.Google Scholar
Jitsumori, M. (1996). A prototype effect and categorization of artificial polymorphous stimuli in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 22(4), 405419.Google Scholar
Jitsumori, M., Ohkita, M., & Ushitani, T. (2011). The learning of basic-level categories by pigeons: The prototype effect, attention, and effects of categorization. Learning & Behavior, 39(3), 271287. doi: 10.3758/s13420-011-0028-4Google Scholar
Johnson, K. E. & Mervis, C. B. (1997). Effects of varying levels of expertise on the basic level of categorization. Journal of Experimental Psychology: General, 126(3), 248277.Google Scholar
Keller, F. S. & Schoenfeld, W. N. (1950). Principles of Psychology: A Systematic Text in the Science of Behavior. New York Appleton-Century-Crofts, Inc.Google Scholar
Kirkpatrick, K., Bilton, T., Hansen, B. C., & Loschky, L. C. (2014). Scene gist categorization by pigeons. Journal of Experimental Psychology: Animal Learning and Cognition, 40(2), 162177. doi: 10.1037/xan0000014Google Scholar
Lazareva, O. F., Freiburger, K. L., & Wasserman, E. A. (2004). Pigeons concurrently categorize photographs at both basic and superordinate levels. Psychonomic Bulletin and Review, 11(6), 11111117.Google Scholar
Lazareva, O. F., Freiburger, K. L., & Wasserman, E. A. (2006). Effects of stimulus manipulations on visual categorization in pigeons. Behavioural Processes, 72, 224233.Google Scholar
Lazareva, O. F. & Wasserman, E. A. (2009). Effects of stimulus duration and choice delay on visual categorization in pigeons. Learning and Motivation, 40, 132146. doi: 10.1016/j.lmot.2008.10.003Google Scholar
Lazareva, O. F., Soto, F., & Wasserman, E. A. (2010). Effect of between-category similarity on basic-level superiority in pigeons. Behavioural Processes, 85, 236245.Google Scholar
Lazareva, O. F., & Wasserman, E. A. (2017). Categories and Concepts in Animals In Byrne, J. H. (Ed.), Learning and Memory: A Comprehensive Reference (2nd ed.) (pp. 111139). Oxford: Academic Press.CrossRefGoogle Scholar
Lea, S. E. G. (1984). In what Sense Do Pigeons Learn Concepts? In Roitblat, H. L., Bever, T. G., & Terrace, H. S. (Eds.), Animal Cognition (pp. 263277). Hillsdale, NJ: Erlbaum. (Reprinted from: IN FILE).Google Scholar
Lea, S. E. G., Poser-Richet, V., & Meier, C. (2015). Pigeons can learn to make visual category discriminations using either low or high spatial frequency information. Behavioural Processes, 112, 8187. doi: http://dx.doi.org/10.1016/j.beproc.2014.11.012Google Scholar
Lea, S. E. G., Pothos, E. M., Wills, A. J., Leaver, L. A., Ryan, C. M. E., & Meier, C. (2018). Multiple feature use in pigeons’ category discrimination: The influence of stimulus set structure and the salience of stimulus differences. Journal of Experimental Psychology. Animal Learning and Cognition, 44(2), 114127. doi: http://dx.doi.org/10.1037/xan0000169Google Scholar
Lubow, R. E. (1974). High-order concept formation in the pigeon. Journal of Experimental Analysis of Behavior, 21(3), 475483.Google Scholar
Makino, H. & Jitsumori, M. (2007). Discrimination of artificial categories structured by family resemblances: A comparative study in people (Homo sapiens) and pigeons (Columba livia). Journal of Comparative Psychology, 121(1), 2233. doi: 10.1037/0735-7036.121.1.22Google Scholar
Mareschal, D., Quinn, P. C., & Lea, S. E. G. (2010). The Making of Human Concepts, New York: Oxford University Press.Google Scholar
Markman, E. M. (1989). Categorization and Naming in Children: Problems of Induction. Cambridge, MA: The MIT Press.Google Scholar
Nicholls, E., Ryan, C. M. E., Bryant, C. M. L., & Lea, S. E. G. (2011). Labeling and family resemblance in the discrimination of polymorphous categories by pigeons. Animal Cognition, 14(1), 2134. doi: 10.1007/s10071-010-0339-4Google Scholar
Poole, J. & Lander, D. G. (1971). The pigeon’s concept of pigeon. Psychonomic Science, 25(3), 157158.CrossRefGoogle Scholar
Premack, D. (1976). Intelligence in Ape and Man. Hillsdale, NJ: John Wiley & Sons.Google Scholar
Quinn, P. C. & Eimas, P. D. (1998). Evidence for a global categorical representation of humans by young infants. Journal of Experimental Child Psychology, 69(3), 151174.Google Scholar
Roberts, W. A. & Mazmanian, D. S. (1988). Concept learning at different levels of abstraction by pigeons, monkeys, and people. Journal of Experimental Psychology: Animal Behavior Processes, 14(3), 247260.Google Scholar
Rosch, E. & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7(4), 573605.Google Scholar
Soto, F. A. & Wasserman, E. A. (2010). Error-driven learning in visual categorization and object recognition: A common-elements model. Psychological Review, 117(2), 349381. doi: 10.1037/a0018695CrossRefGoogle ScholarPubMed
Soto, F. A. & Wasserman, E. A. (2012). Visual object categorization in birds and primates: Integrating behavioral, neurobiological, and computational evidence within a ‘general process’ framework. Cognitive, Affective & Behavioral Neuroscience, 12(1), 220240. doi: 10.3758/s13415-011-0070-xGoogle Scholar
Stephan, C., Wilkinson, A., & Huber, L. (2012). Have we met before? Pigeons recognise familiar human faces. [Article]. Avian Biology Research, 5(2), 7580. doi: 10.3184/175815512x13350970204867Google Scholar
Tanaka, J. W. & Taylor, M. (1991). Object categories and expertise: Is the basic level in the eye of the beholder? Cognitive Psychology, 23(3), 457482.CrossRefGoogle Scholar
Urcuioli, P. J., Wasserman, E. A., & Zentall, T. R. (2014). Associative concept learning in animals: Issues and opportunities. Journal of the Experimental Analysis of Behavior, 101(1), 165170. doi: 10.1002/jeab.62Google Scholar
Wasserman, E. A. (2016). Conceptualization in pigeons: The evolution of a paradigm. Behavioural Processes, 123, 414. doi: 10.1016/j.beproc.2015.09.010Google Scholar
Wasserman, E. A., Kiedinger, R. E., & Bhatt, R. S. (1988). Conceptual behavior in pigeons: Categories, subcategories, and pseudocategories. Journal of Experimental Psychology: Animal Behavior Processes, 14(3), 235246.Google Scholar
Wasserman, E. A., DeVolder, C. L., & Coppage, D. J. (1992). Nonsimilarity-based conceptualization in pigeons via secondary or mediated generalization. Psychological Science, 3(6), 374378.Google Scholar
Wasserman, E. A., Brooks, D. I., & McMurray, B. (2015). Pigeons acquire multiple categories in parallel via associative learning: A parallel to human word learning? Cognition, 136, 99122. doi: 10.1016/j.cognition.2014.11.020Google Scholar
Yamazaki, Y., Aust, U., Huber, L., Hausmann, M., & Güntürkün, O. (2007). Lateralized cognition: Asymmetrical and complementary strategies of pigeons during discrimination of the “human concept.Cognition, 104(2), 315344. doi: 10.1016/j.cognition.2006.07.004CrossRefGoogle ScholarPubMed
Zentall, T. R., Wasserman, E. A., Lazareva, O. F., Thompson, R. K. R., & Rattermann, M. J. (2008). Concept learning in animals. Comparative Cognition and Behavior Reviews, 3, 1345.Google Scholar
Zentall, T. R., Wasserman, E. A., & Urcuioli, P. J. (2014). Associative concept learning in animals. Journal of the Experimental Analysis of Behavior, 101(1), 130151. doi: http://dx.doi.org/10.1002/jeab.55Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×