Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T10:36:32.817Z Has data issue: false hasContentIssue false

8 - Prediction of adult body composition from infant and child measurements

Published online by Cambridge University Press:  18 September 2009

P. S. W. Davies
Affiliation:
University of Cambridge
T. J. Cole
Affiliation:
University of Cambridge
Get access

Summary

Introduction

Anatomists demonstrated many years ago that organs grow at different rates, and that these rates can differ from the growth rate of the body as a whole (Forbes, 1978). Further, auxologists have shown that children grow at a variety of rates: they can play lento or allegro (Tanner, 1986). The first case corresponds to a normal process where growth is organised in successive steps, while in the second case individual variation due to genetic and/or environmental factors influences the growth process. This variation makes it difficult to predict adult body composition from childhood measurements. However, growth is affected by hormonal status, so that childhood is a good time to study the relationship between anthropometry and hormonal status, and to analyse the influence of environmental factors such as nutrition. In general, patterns of growth give more useful information than absolute levels of anthropometric measurements. Better understanding of factors influencing body composition can improve prediction of adult status and help to propose strategies for reducing the risk factors of various diseases.

Use of anthropometric measurements

Anthropometric measurements can be used in several ways: directly (e.g. skinfolds), as indices (e.g. weight/height2, the Quetelet or body mass index (BMI)), areas (e.g. upper arm muscle area (UMA) based on arm skinfolds and arm circumference) or in regression equations relating body density to anthropometric measurements for a reference population. In addition, various ratios can be used to predict body shape and proportion.

Direct measurements and the BMI predict the level of fatness, while UMA and the regression equations predict body composition (i.e. fat mass (FM), fat-free mass (FFM) and % body fat (%BF)).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×