Published online by Cambridge University Press: 05 June 2012
Introduction
In the previous chapter the shape functions Ni have hardly been discussed in any detail. The key purpose of this chapter is first to introduce isoparametric shape functions, and second to outline numerical integration of the integrals appearing in the element coefficient matrices and element column. Before this can be done it is useful to understand the minimum requirements to be imposed on the shape functions. The key question involved is, what conditions should at least be satisfied such that the approximate solution of the boundary value problems, dealt with in the previous chapter, generated by a finite element analysis, converges to the exact solution at mesh refinement. The answer is:
(i) The shape functions should be smooth within each element Ωe, i.e. shape functions are not allowed to be discontinuous within an element.
(ii) The shape functions should be continuous across each element boundary. This condition does not always have to be satisfied, but this is beyond the scope of the present book.
(iii) The shape functions should be complete, i.e. at element level the shape functions should enable the representation of uniform gradients of the field variable(s) to be approximated.
Conditions (i) and (ii) allow that the gradients of the shape functions show finite jumps across the element interface. However, smoothness in the element interior assures that all integrals in which gradients of the unknown function, say u, occur can be evaluated.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.