Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T10:42:53.507Z Has data issue: false hasContentIssue false

10 - NF-kB-independent responses activated by bacterial–epithelial interactions: the role of arachidonic acid metabolites

from Part III - Host cell signaling by bacteria

Published online by Cambridge University Press:  12 August 2009

Beth A. McCormick
Affiliation:
Pediatric Gastroenterology Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 021291, USA
Randall J. Mrsny
Affiliation:
Welsh School of Pharmacy, Cardiff University, Cardiff, UK
Beth A. McCormick
Affiliation:
Harvard University, Massachusetts
Get access

Summary

INTRODUCTION

Lipid membranes and the individual lipids that comprise them were initially considered to solely provide eukaryotic cells with organized hydrophobic barriers used to separate cytoplasmic and extracellular environments. Additional studies demonstrated that these lipid bilayer structures also acted as boundaries for discrete intracellular structures, e.g. mitochondria, endosomes, and endoplasmic reticulum. Although this capacity to separate aqueous compartments clearly is an essential feature of normal cell structure and function, more recent studies have demonstrated that lipid components in these bilayer membranes also provide cells with substrates to produce a spectrum of intra- and extracellular messengers. Metabolism of membrane lipid components has been shown to produce bioactive lipids that participate in numerous signaling mechanisms. Many of these bioactive lipids, such as prostaglandins, leukotrienes, hydroperoxy acids, hepoxilins, lipoxins, and thromboxanes, are derived from the metabolic processing of arachidonic acid.

Arachadonic acid, a 20-carbon fatty acid that contains four carbon–carbon double bonds, is the precursor substrate used for the production of a large family of bioactive lipids known as eicosanoids (Fitzpatrick and Soberman, 2001; Lieb, 2001) (Figure 10.1). By itself, arachidonic acid can act as a second messenger by its ability to interact with GTP-binding proteins (Abramson et al.., 1991), inhibit GTPase-activating protein regulated by RAS (Ras-GAP) function (Han et al., 1991), cause the release of Ca2+ ions stored in the sarcoplasmic reticulum (Dettbarn and Palade, 1993), and modulate protein kinase C (PKC) activity (Khan et al., 1995).

Type
Chapter
Information
Bacterial-Epithelial Cell Cross-Talk
Molecular Mechanisms in Pathogenesis
, pp. 269 - 298
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramson, S. B., Leszczynska-Piziak, J., and Weissmann, G. (1991). Arachidonic acid as a second messenger: interaction with a TP-binding protein of human neutrophils. J. Immunol. 147, 231–236.Google Scholar
Akiba, S. and Sato, T. (2004). Cellular function of calcium-independent Phospholipase A2. Biol. Pharm. Bull. 27, 1174–1178.CrossRefGoogle ScholarPubMed
Al-Marhoon, M. S., Nunn, S., and Soames, R. W. (2004). CagA+ Helicobacter pylori induces greater levels of prostaglandin E2 than CagA(−) strains. Prostaglandins Other Lipid Mediat. 7, 181–189.CrossRefGoogle Scholar
Altschuler, Y., Liu, S., Katz, L., et al. (1999). ADP-ribosylation factor 6 and endocytosis at the apical surface of Madin-Darby canine kidney cells. J. Cell Biol. 147, 7–12.CrossRefGoogle ScholarPubMed
Arm, J. P. and Lee, T. H. (1994). Evidence for a specific role of leukotriene E4 in asthma and airway hyperresponsiveness. Adv. Prostaglandin Thromboxane Leukot. Res. 22, 227–240.Google ScholarPubMed
Avunduk, C., Suliman, M., Gang, D., Polakowski, N., and Eastwood, G. L. (1991). Gastroduodenal mucosal prostaglandin generation in patients with Helicobacter pylori before and after treatment with bismuth subsalicylate. Dig. Dis. Sci. 36, 431–434.CrossRefGoogle ScholarPubMed
Bahnson, B. J. (2005). Structure, function and interfacial allosterism in phospholipase A2: insight from the anion-assisted dimmer. Arch. Biochem. Biophys. 433, 96–106.CrossRefGoogle Scholar
Bailie, M. B., Staniford, T. J., Laichalk, L. L., et al. (1996). Leukotriene deficient mice manifest enhanced lethality from Kleibsiella pneumonia in association with decreased alveolar macrophage phagocytic and bacterial activities. J. Immunol. 157, 5221–5224.Google Scholar
Balsinde, J., Balboa, M. A., Insel, P. A., and Dennis, E. A. (1999). Regulation and inhibition of phospholipase A2. Annu. Rev. Pharmacol. Toxicol. 39, 175–189.CrossRefGoogle ScholarPubMed
Bannenberg, G. L., Aliberti, J., Hong, S., Sher, A., and Serhan, C. N. (2004). Exogenous pathogen and plant 15-lipoxygenase initiate endogenous lipoxin A4 biosynthesis. J. Exp. Med. 199, 515–523.CrossRefGoogle ScholarPubMed
Bigby, T. D. and Holtzman, M. J. (1987). Enhanced 5-lipoxygenase activity in lung macrophages compared to monocytes from animal subjects. J. Immunol. 138, 1546–1550.Google Scholar
Blaser, M. J., Perez-Perez, G. I., Kleanthous, H., et al. (1995). Infection with Helicobacter pylori strains possessing cagA associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 55, 2111–2115.Google ScholarPubMed
Bouchelouche, P. N., Berild, D., Nielson, O. H., Elmgreen, J., and Poulsen, H. S. (1995). Leukotriene B4 receptor levels and intracellular calcium signaling in polymorphonuclear leukocytes from patients with Crohn's disease. Eur. J.Gastroenterol. Hepatol. 7, 349–356.Google Scholar
Burns, A. R., Smith, C. W., and Walker, D. C. (2003). Unique structural features that influence neutrophil emigration into the lung. Physiol. Rev. 83, 309–336.CrossRefGoogle ScholarPubMed
Byrum, R. S., Goulet, J. L., Snouwaert, J. N., Griffiths, J. R., and Koller, B. H. (1999). Determination of the contribution of cysteinyl leukotrienes and leukotriene B4 in acute inflammatory responses using 5-lipoxygenase- and leukotriene A4 hydrolase-deficient mice. J.Immunol. 163, 6810–6819.Google ScholarPubMed
Casellas, F., Guarner, F., Antolin, M., et al. (1994). Abnormal leukotriene C4 released by unaffected jejunal mucosa in patients with inactive Crohn's disease. Gut 35, 517–522.CrossRefGoogle ScholarPubMed
Chen, X. S. and Funk, C. D. (2001). The N-terminal beta barrel domain of 5-lipoxygenase is essential for nuclear membrane translocation. J. Biol. Chem. 276, 811–818.CrossRefGoogle ScholarPubMed
Cover, T. L., Dooley, C. P., and Blaser, M. J. (1990). Characterization and human serologic response to proteins in Helicobacter pylori broth culture supernatants with vacuolizing cytotoxin activity. Infect. Immun. 58, 603–610.Google ScholarPubMed
Crabtree, J. E. (1998). Role of cytokines in the pathogenesis of Helicobacter pylori-induced mucosal damage. Dig. Dis. Sci. 43, 46S–55S.Google ScholarPubMed
Crabtree, J. E., Taylor, J. D., Wyatt, J. I., et al. (1991). Mucosal IgA regulation of Helicobacter pylori 120 K Da protein, peptic ulceration, and gastric pathology. Lancet 338, 332–335.CrossRefGoogle Scholar
Craig-Schmidt, M. C., Faircloth, S. A., Teer, P. A., Weete, J. D., and Wu, C.-Y. (1986). The essential fatty acid deficient chicken as a model for cystic fibrosis. Am. J. Clin. Nutr. 44, 816–824.CrossRefGoogle ScholarPubMed
Criss, A. K., Silva, M., Casanova, J. E., and McCormick, B. A. (2001). Regulation of Salmonella-induced neutrophil transmigration by epithelial ADP-ribosylation factor 6. J. Biol. Chem. 276, 48 431–48 439.CrossRefGoogle ScholarPubMed
Cryer, B. (2001). Mucosal defense and repair: role of prostaglandins in the stomach and duodenum. Gastronterol. Clin. North Am. 30, 877–894.CrossRefGoogle ScholarPubMed
Dettbarn, C. and Palade, P. (1993). Arachidonic acid-induced Ca2+ release from isolated sarcaoplasmic reticulum. Biochem. Pharmacol. 45, 1301–1309.CrossRefGoogle ScholarPubMed
DiMango, E, Zar, H. J., Bryan, R., and Prince, A. (1995). Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J. Clin. Invest. 96, 2204–2210.CrossRefGoogle ScholarPubMed
Dinarello, C. A. (1986). Multiple biological activities of human recombinant interleukin-1. Immunobiology 172, 301–315.CrossRefGoogle Scholar
D'Souza-Shorey, C, Li, G., Colombo, M. I., and Stahl, P. D. (1995). A regulatory role for ARF6 in receptor-mediated endocytosis. Science 267, 1175–1178.CrossRefGoogle Scholar
DuPont, H. L. and Hornick, R. B. (1973). Adverse effect of lomotil therapy in shigellosis. J. Am. Med. Assoc. 226, 1525–1528.CrossRefGoogle ScholarPubMed
Eberhart, C. E. and DuBois, R. N. (1995). Eicosanoids and the gastrointestinal tract. Gastroenterology 109, 285–301.CrossRefGoogle ScholarPubMed
Eckmann, L., Stenson, W. F., Savidge, T. C., et al. (1997). Role of intestinal epithelial cells in the host secretory response to infection by invasive bacteria. J. Clin. Invest. 100, 296–309.CrossRefGoogle ScholarPubMed
Engel, L. D., Pasquinelli, K. L., Leone, S. A., et al. (1988). Abnormal lymphocyte profiles and leukotriene B4 in a patient with Crohn's disease and severe periodontitis. J. Periodontol. 59, 841–847.CrossRefGoogle Scholar
Exton, J. H. (1994). Phosphoinositide phospholipases and G proteins in hormone action. Annu. Rev. Physiol. 56, 349–369.CrossRefGoogle Scholar
Finch, R. (2001). Community-acquired pneumonia: the evolving challenge. Clin. Microbiol.Infect. 7, 30–38.CrossRefGoogle ScholarPubMed
Fitzpatrick, F. A. and Soberman, R. (2001). Regulated formation of eicosinoids. J. Clin.Invest. 107, 1347–1351.Google Scholar
Ford-Hutchinson, A. W., Bray, M. A., Doig, M. V., Shipley, M. E., and Smith, M. J. (1980). Leukotriene B4, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286, 264–265.CrossRefGoogle ScholarPubMed
Ford-Hutchinson, A. W., Gresser, M., and Young, R. N. (1994). 5-Lipoxygenase. Annu. Rev.Biochem. 63, 383–417.Google ScholarPubMed
Freedman, S. D., Katz, M. H., Parker, E. M., et al. (1999). A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr−/− mice. Proc. Natl. Acad. Sci. U. S. A. 96, 13 995–14 000.CrossRefGoogle Scholar
Freedman, S. D., Weinstein, D., Blanco, P. G., et al. (2002). Characterization of LPS-induced lung inflammation in cftr−/− mice and the effect of docosahexaenoic acid. J. Appl. Physiol. 92, 2169–2176.CrossRefGoogle ScholarPubMed
Fu, S., Ramanujam, K. S., Wong, A., et al. (1999). Increased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase 2 in Helicobacter pylori gastritis. Gastroenterology 116, 1319–1329.CrossRefGoogle ScholarPubMed
Garibaldi, R. A. (1985). Epidemiology of community-acquired respiratory tract infections in adults: incidence, etiology, and impact. Am. J. Med. 78, 32–37.CrossRefGoogle ScholarPubMed
Gewirtz, A. T., Simon, P. O., Scmitt, C. K., et al. (2001). Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J. Clin. Invest. 107, 99–109.CrossRefGoogle ScholarPubMed
Gijon, M. A. and Leslie, C. C. (1999). Regulation of arachidonic acid release and cytosolic phospholipase A2 activation. J. Leukoc. Biol. 65, 330–336.CrossRefGoogle ScholarPubMed
Gilljam, H., Strandvik, B., Ellin, A., and Wiman, L. G. (1986). Increased mole fraction of arachidonic acid in bronchial phospholipids in patients with cystic fibrosis. Scand. J. Clin. Lab.Invest. 46, 511–518.CrossRefGoogle ScholarPubMed
Gilroy, D. W., Tomlinson, A., and Willoughby, D. A. (1995). Differential effects of inhibition of isoforms of cyclooxygenase (COX-1, COX-2) in chronic inflammation. Inflamm. Res. 47, 79–85.CrossRefGoogle Scholar
Goldstone, A. R., Quirke, P., and Dixon, M. F. (1996). Helicobacter pylori infection and gastric cancer. J. Pathol. 179, 129–137.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Grandordy, B. M., Lacroix, H., Mavoungou, E., et al. (1990). Lipoxin A4 inhibits phosphoinositide hydrolysis in human neutrophils. Biochem. Biophys. Res. Commun. 167, 1022–1029.CrossRefGoogle ScholarPubMed
Han, J., McCormick, F., and Macara, I. G. (1991). Regulation of Ras-GAP and the neurofibromatosis-gene product by eicosanoids. Science 252, 576–579.CrossRefGoogle ScholarPubMed
Harper, T. B., Chase, H. R., Henson, J., and Henson, P. M. (1982). Essential fatty acid deficiency in the rabbit as a model of nutritional impairment in cystic fibrosis. In vitro and in vivo effects on lung defense mechanisms. Am. Rev. Respir. Dis. 126, 540–547.Google ScholarPubMed
Heeckeren, A., Walenga, R., Konstan, M. W., et al. (1997). Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J. Clin. Invest. 100, 2810–2815.CrossRefGoogle ScholarPubMed
Heffelfinger, J. D., Dowell, S. F., Jorgenssen, J. H., et al. (2002). Management of community-acquired pneumonia in the era of pneumococcal resistance: a report from the Drug-Resistant Streptococcus pneumoniae Therapeutic Working Group. Arch. Intern. Med. 160, 1399–1408.CrossRefGoogle Scholar
Hirabayashi, T., Maurayama, T., and Shimizu, T. (2004). Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biol. Pharm. Bull. 27, 1168–1173.CrossRefGoogle ScholarPubMed
Hong, S. L. and Deykin, D. (1981). The activation of phosphoinositol-hydrolyzing phospholipase A2 during prostaglandin synthesis in transformed mouse BALB/3T3 cells. J. Biol.Chem. 256, 5215–5219.Google ScholarPubMed
Hong, S., Gronert, K., Devchand, P. R., Moussignac, R.-L., and Serhan, C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells: autocoids and anti-inflammation. J. Biol. Chem. 278, 14 677–14 687.CrossRefGoogle Scholar
Hook, E. W. (1990). Salmonella species (including typhoid fever). In Principles and Practice of Infectious Diseases, ed. Mandell, G. L., Douglas, R. G., and Bennet, J. E.. New York: Churchill Livingston, pp. 1700–1716.Google Scholar
Hurley, B. P., Siccardi, D., Mrsny, R. J., and McCormick, B. A. (2004). PMN transepithelial migration induced by Pseudomonas aeruginosa requires the eicosinoid hepoxilin A3. J. Immunol. 173, 5712–5720.CrossRefGoogle Scholar
Hybiske, K, Ichikawa, J. K., Huang, V., Lory, S. J., and Machen, T. E. (2004). Cystic fibrosis airway epithelial cell polarity and bacterial flagellin determine host response to Pseudomonas aeruginosa. Cell Microbiol. 6, 49–63.CrossRefGoogle ScholarPubMed
Ikehata, A., Hiwatashi, N., Kinouchi, Y., et al. (1992). Effect of intravenously infused eicosapentaenoic acid on the leukotriene generation in patients with active Crohn's disease. Am. J. Clin. Nutr. 56, 938–942.CrossRefGoogle ScholarPubMed
Ishikawa, T. (1992). The ATP-dependent glutathione S-conjugate export pump. Trends Biochem. Sci. 17, 463–468.CrossRefGoogle ScholarPubMed
Jackson, L. M., Wu, K. C., Mahida, Y. R., Jenkins, D., and Hawkey, C. J. (2000). Cyclooxygenase (COX) 1 and 2 in normal, inflamed, and ulcerated human gastric mucosa. Gut 47, 762–770.CrossRefGoogle ScholarPubMed
Jahn, H. U., Krull, M., Wuppermann, F. N., et al. (2000). Infection and activation of airway epithelial cells by Chlamydia. J. Infect. Dis. 182, 1678–1684.CrossRefGoogle ScholarPubMed
Kamei, D., Murakami, M., Nakatani, Y., et al. (2003). Potential role of microsomal prostaglandin E synthase-1 in tumorigenesis. J. Biol. Chem. 267, 6428–6432.Google Scholar
Karp, C. L., Flick, L. M., Park, K. W., et al. (2004). Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis pathway. Nat. Immunol. 5, 388–392.CrossRefGoogle Scholar
Kawabe, T., Chen, Z. S., Wada, M., et al. (1999). Enhanced transport of anticancer agents and leukotriene C4 by the human canalicular multispecific organic anion transporter cMOAT/MRP2. FEBS Lett. 456, 327–331.CrossRefGoogle ScholarPubMed
Kerem, B., Rommens, J. M., Buchanan, J. A., et al. (1989). Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080.CrossRefGoogle ScholarPubMed
Khan, W. A., Blobe, G. C., and Hannun, Y. A. (1995). Arachidonic acid and free fatty acids as second messengers and the role of protein kinase C. Cell Signal. 7, 171–184.CrossRefGoogle ScholarPubMed
Kirtland, S. J. (1988). Prostaglandin E1: a review. Prostaglandins Leukot. Essent. Fatty Acids 32, 165–174.CrossRefGoogle ScholarPubMed
Kumar, N. B., Nostrant, T. T., and Appelman, H. D. (1982). The histopathologic spectrum of acute self-limited colitis (acute infectious type colitis). Am. J. Surg. Path. 6, 523–529.CrossRefGoogle Scholar
Kurahashi, K., Nishihashi, T., Trandafir, C. C., et al. (2003). Diversity of endothelium-derived vasocontracting factors: arachidonic acid metabolites. Acta. Pharmacol. Sin. 24, 1065–1069.Google ScholarPubMed
Lai, H.-C., Kosorok, M. R., Laxova, A., et al. (2000). Nutritional status of patients with cystic fibrosis with meconium ileus: a comparison with patients without meconium ileus and diagnosed early through neonatal screening. Pediatrics 105, 53–61.CrossRefGoogle ScholarPubMed
Lee, C. A., Silva, M., Siber, A. M., et al. (2000). A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration. Proc. Natl. Acad. Sci. U. S. A. 97, 12 283–12 288.CrossRefGoogle ScholarPubMed
Leier, I., Jedlitschky, G., Buchholz, U., et al. (1994). The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J. Biol. Chem. 269, 27 807–27 810.Google ScholarPubMed
Leslie, C. C. (1997). Properties and regulation of cytosolic phospholipase A2. J. Biol. Chem. 272, 16 709–16 712.CrossRefGoogle ScholarPubMed
Leslie, C. C. (2004). Regulation of the specific release of arachidonic acid by cytosolic phospholipase A2. Prostaglandins Leukot. Essent. Fatty Acids 70, 373–376.CrossRefGoogle ScholarPubMed
Li, M., McCann, J. D., Anderson, M. P., et al. (1989). Regulation of chloride channels by protein kinase C in normal and cystic fibrosis airway epithelia. Science 244, 1353–1356.CrossRefGoogle ScholarPubMed
Lieb, J. (2001). Eicosanoids: the molecules of evolution. Med. Hypotheses 56, 686–693.CrossRefGoogle Scholar
Londono, I., Marshansky, V., Bourgoin, S., Vinay, P., and Bendayan, M. (1999). Expression and distribution of adenosine diphosphate ribosylation factors in the rat kidney. Kidney Int. 55, 1407–1416.Google ScholarPubMed
Luscinskas, F. W., Nicolaou, K. C., Webber, S. E., et al. (1990). Ca2+ mobilization with leukotriene A4 and epoxytetraenes in human neutrophils. Biochem. Pharmacol. 39, 355–365.CrossRefGoogle ScholarPubMed
Lyczak, J. B., Cannon, C. L., and Pier, G. B. (2002). Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 15, 194–222.CrossRefGoogle ScholarPubMed
McCormick, B. A., Colgan, S. P., Archer, C. D., Miller, S. I., and Madara, J. L. (1993). Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J. Cell Biol. 123, 895–907.CrossRefGoogle ScholarPubMed
McCormick, B., Hofman, P., Kim, J., et al. (1995). Surface attachment of Salmonella typhimurium to intestinal epithelia imprints the subepithelial matrix with gradients chemotactic for neutrophils. J. Cell Biol. 131, 1599–1608.CrossRefGoogle ScholarPubMed
McCormick, B. A., Parkos, C. A., Colgan, S. P., Carnes, D. K., and Madara, J. L. (1998). Apical secretion of a pathogen-elicited epithelial chemoattractant (PEEC) activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J. Immunol. 160, 455–466.Google ScholarPubMed
McGovern, V. J. and Slavutin, L. J. (1979). Pathology of Salmonella colitis. Am. J. Surg. Pathol. 3, 483–490.CrossRefGoogle ScholarPubMed
McIntosh, K. (2002). Community-acquired pneumonia in children. N. Engl. J. Med. 346, 429–437.CrossRefGoogle ScholarPubMed
Moncada, S. and Vane, J. R. (1978). Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol. Rev. 30, 293–331.Google ScholarPubMed
Monjazeb, A. M., Clay, C. E., High, K. P., and Chilton, F. H. (2002). Antineoplastic properties of arachidonic acid and its metabolites. Prostaglandins Leukot. Essent. Fatty Acids 66, 5–12.CrossRefGoogle ScholarPubMed
Moss, C. W., Samuels, S. B., and Weaver, R. E. (1972). Cellular fatty acid composition of selected Pseudomonas species. Appl. Microbiol. 24, 596–598.Google ScholarPubMed
Mrsny, R. J., Gewirtz, A. T., Siccardi, D., et al. (2004). Identification of hepoxilin A3 in inflammatory events: a required role in neutrophil migration across the intestinal epithelia. Proc. Natl. Acad. Sci. U. S. A. 101, 7421–7426.CrossRefGoogle ScholarPubMed
Nabwera, H. M. and Logan, R. P. (1999). Epidemiology of Helicobacter pylori infection: transmission, translocation, and extragastric reservoirs. J. Physiol. Pharmacol. 50, 711–722.Google ScholarPubMed
Nardone, G., Rocco, A., Vaira, D., et al. (2004). Expression of COX-2, mPGE-synthase, MDR-1 (P-GP), and Bcl-xL: a molecular pathway of H. pylori-related gastric carcinogenesis. J. Pathol. 202, 305–312.CrossRefGoogle Scholar
Ney, P., Braun, M., Szymanski, C., Bruch, L., and Schror, K. (1991). Antiplatelet, antineutrophil and vasodilating properties of 13, 14-dihydro-PGE1 (PGE0): an in vivo metabolite of PGE1 in man. Eicosanoids 4, 117–184.Google Scholar
Nguyen, T. and Gupta, S. (1997). Leukotriene C4 secretion from normal murine mast cells by a probenecid-sensitive and multidrug resistance-associated protein independent mechanism. J.Immunol. 158, 4916–4920.Google ScholarPubMed
Nicholson, D. W., Ali, A., Vailancourt, J. P., et al. (1993). Purification to homogeneity and the N-terminal sequences of human leukotriene C4 synthase: a homodimeric glutathione S-transferase composed of 18-kDa subunits. Proc. Natl. Acad. Sci. U. S. A. 90, 2015–2019.CrossRefGoogle Scholar
Nishizuka, Y. (1992). Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258, 607–614.CrossRefGoogle ScholarPubMed
Odenbreit, S., Puls, J., Sedlmaier, B., et al. (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type 1V secretion. Science 287, 1497–1500.CrossRefGoogle Scholar
Pascual, R. M., Awsare, B. K., Farber, S. A., et al. (2003). Regulation of phospholipase A2 by interleukin-1 in human airway smooth muscle. Chest 123, 433S–434S.CrossRefGoogle ScholarPubMed
Patel, V. A., Dunn, M. J., and Sorokin, A. (2002). Regulation of MDR-1 (P-glycoprotein) by cyclooxygenase-2. J. Biol. Chem. 277, 38 915–38 920.CrossRefGoogle ScholarPubMed
Pizurki, L, Morris, M. A., Chanson, M., et al. (2000). CFTR does not affect PMN migration across cystic fibrosis airway epithelial monolayers. Am. J. Pathol. 156, 1407–1416.CrossRefGoogle Scholar
Pomorski, T., Meyer, T. F., and Naumann, M. (2001). Helicobacter pylori-induced prostaglandin E2 synthesis involves activation of cytosolic phospholipase A2 in epithelial cells. J. Biol. Chem. 276, 804–810.CrossRefGoogle Scholar
Ratnasinghe, D., Dashner, P. J., Anver, M. R., et al. (2001). Cyclooxygenase-2, P-glycoprotein-170 and drug resistance: is chemoprevention against multidrug resistance possible?Anticancer Res. 21, 2141–2148.Google ScholarPubMed
Reid, G., Wielinga, P., Zelcer, N., et al. (2003). The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal anti-inflammatory drugs. Proc. Natl. Acad. Sci. U. S. A. 100, 9244–9249.CrossRefGoogle Scholar
Riordan, J. R., Rommens, J. M., Karen, B. S., et al. (1989). Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.CrossRefGoogle ScholarPubMed
Robbiani, D. F., Finch, R. A., Jager, D., et al. (2000). The leukotriene C(4) transporter MRP1 regulates CCL19 (MIP-beta, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell 103, 757–768.CrossRefGoogle Scholar
Rout, W. R., Formal, S. B., Dammin, G. J., and Giannella, R. A. (1974). Pathophysiology of Salmonella diarrhea in the Rhesus monkey: intestinal transport, morphological and bacteriological studies. Gastroenterology 67, 59–70.Google ScholarPubMed
Sansonetti, P. J. (2004). War and peace at mucosal surfaces. Nat. Rev. Immunol. 4, 953–964.CrossRefGoogle ScholarPubMed
Sato, H.Frank, D. W., Hillard, C. J., et al. (2003). The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J. 22, 2959–2969.CrossRefGoogle ScholarPubMed
Schultz, M. J., Wijnholds, J., Peppelenbosch, M. P., et al. (2001). Mice lacking the multi-drug resistance protein-1 are resistant to Streptococcus pneumoniae-induced pneumonia. J. Immunol. 166, 4059–4064.CrossRefGoogle Scholar
Seeds, M. C. and Bass, D. A. (1999). Regulation and metabolism of arachidonic acid. Clin. Rev. Allergy Immunol. 17, 5–26.CrossRefGoogle ScholarPubMed
Serhan, C. N., Hong, S., Gronert, K., et al. (2002). Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J.Exp. Med. 196, 1025–1037.Google ScholarPubMed
Sharma, S. A., Tummuru, M. K., Miller, G. C., and Blaser, M. J. (1995). Interleukin-8 response of gastric epithelial cell lines to Helicobacter pylori stimulation in vitro. Infect. Immun. 63, 1681–1687.Google ScholarPubMed
Sinzinger, H., O'Grady, J., Demers, L. M., et al. (1990). Thromboxane in cardiovascular disease. Eicosanoids 3, 59–64.Google ScholarPubMed
Smart, S. J. and Casale, T. B. (1994). Pulmonary epithelial cells facilitate TNF-alpha-induced neutrophil chemotaxis: a role for cytokine networking. J. Immunol. 152, 4087–4094.Google ScholarPubMed
Smith, W. L. and DeWitt, D. L. (1996). Prostaglandin endoperoxidae H synthase-1 and -2. Adv. Immunol. 62, 167–215.CrossRefGoogle Scholar
Songer, J. G. (1997). Bacterial phospholipases and their role in virulence. Trends Microbiol. 5, 156–161.CrossRefGoogle ScholarPubMed
Strandvik, B. (1992). Long chain fatty acid metabolism and essential fatty acid deficiency with special emphasis on cystic fibrosis. In Polyunsaturated Fatty Acids in Human Nutrition, ed. Bracco, U. and Decklelbaum, R. J.. New York: Raven Press, pp. 159–167.Google Scholar
Sutherland, M., Schewe, T., and Nigam, S. (2000). Biological actions of the free acid of hepoxilin A3 on human neutrophils. Biochem. Pharmacol. 59, 435–440.CrossRefGoogle ScholarPubMed
Tatsuguchi, A., Sakamoto, C., Wada, K., et al. (2000). Localization of cyclooxygenase 1 and cyclooxygenase 2 in Helicobacter pylori related gastritis and gastric ulcer tissues in humans. Gut 46, 782–789.CrossRefGoogle Scholar
Thoren, S. and Jakobsson, P. J. (2000). Coordinate up- and down regulation of glutathione-dependent prostaglandin E synthase and cyclooxygenase-2 in A549 cells: inhibition by NS-398 and leukotriene C4. Eur. J. Biochem. 267, 6428–6432.CrossRefGoogle ScholarPubMed
Tuomanen, E. I., Austrian, R., and Masure, H. R. (1995). Pathogenesis of pneumococcal infection. N. Engl. J. Med. 322, 1280–1284.CrossRefGoogle Scholar
Turk, J., Maas, R. L., Brash, A. R., Roberts, L. J., and Oates, J. A. (1982). Arachidonic acid 15-lipoxygenase products from human eosinophils. J. Biol. Chem. 257, 7068–7076.Google ScholarPubMed
Vance, R. E., Hong, S., Gronert, K., Serhan, C. N., and Mekalanos, J. J. (2004). The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase. Proc. Natl.Acad. Sci. U. S. A. 101, 2135–2139.CrossRefGoogle ScholarPubMed
Venkateswarlu, K. and Cullen, P. J. (2000). Signaling via ADP-ribosylation factor 6 lies downstream of phosphatidylinositide 3-kinase. Biochem. J. 345, 719–724.CrossRefGoogle ScholarPubMed
Wagner, J. G. and Roth, R. A. (2000). Neutrophil migration mechanisms, with an emphasis on the pulmonary vasculature. Pharmacol. Rev. 52, 349–374.Google ScholarPubMed
Wallace, J. L. (1992). Prostaglandins, NSAIDs, and cytoprotection. Gastroenterol. Clin. NorthAm. 21, 631–641.Google ScholarPubMed
Wallis, T. S., Vaughan, A. T. M., Clarke, G. J., et al. (1990). The role of leucocytes in the induction of fluid secretion by Salmonella typhimurium. J.Med. Microbiol. 31, 27–35.Google ScholarPubMed
Wambura, C., Aoyama, N., Shirasaka, D., et al. (2002). Effect of Helicobacter pylori-induced cyclooxygenase-2 on gastric epithelial cell kinetics: implication for gastric carcinogenesis. Helicobacter 7, 129–138.CrossRefGoogle ScholarPubMed
Weiss, S. (1989). Tissue destruction by neutrophils. N. Engl. J. Med. 320, 365–376.Google ScholarPubMed
Wijnholds, J., Evers, R., Leusden, M. R., et al. (1997). Increased sensitivity to anti-cancer drugs and decreased inflammatory response in mice lacking the multi-drug resistance associated protein. Nat. Med. 3, 1275–1279.CrossRefGoogle Scholar
Wilderman, P. J., Vasil, A. I., Johnson, Z., and Vasil, M. L. (2001). Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model. Mol. Microbiol. 39, 291–303.CrossRefGoogle Scholar
Wilkinson, S. G. (1988). In Microbial Lipids, ed. Ratledge, C. and Wilkinson, S. G.. London: Academic Press, pp. 299–488.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×