Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T06:01:19.811Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 October 2020

Jonathan M. Fraser
Affiliation:
University of St Andrews, Scotland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R. J. The Geometry of Random Fields, John Wiley & Sons (1981).Google Scholar
Aikawa, H. Quasiadditivity of Riesz capacity, Math. Scand., 69 (1991), 1530.Google Scholar
Allaart, P. and Kawamura, K.. The Takagi function: a survey, Real Anal. Ex., 37 (2011), 154.Google Scholar
Anderson, T. C., Hughes, K., Roos, J., and Seeger, A.. LpLq bounds for spherical maximal operators, Math. Z.,(2020).https://doi.org/10.1007/s00209–020-02546-0CrossRefGoogle Scholar
Angelevska, J., Käenmäki, A., and Troscheit, S.. Self-conformal sets with positive Hausdorff measure, Bull. Lond. Math. Soc., 52 (2020), 200223.Google Scholar
Assouad, P. Espaces métriques, plongements, facteurs, Thèse de doctorat d’État, Publ. Math. Orsay 223–7769, Univ. Paris XI, Orsay (1977).Google Scholar
Assouad, P. Étude d’une dimension métrique liée à la possibilité de plongements dans Rn , C. R. Acad. Sci. Paris Sr. A-B, 288 (1979), 731734.Google Scholar
Assouad, P. Plongements lipschitziens dans Rn, Bull. Soc. Math. France, 111 (1983), 429448.Google Scholar
Athreya, K. B. Large deviation rates for branching processes. I. Single type case, Ann. Appl. Probab., 4 (1994), 779790.CrossRefGoogle Scholar
Badziahin, D. and Velani, S.. Badly approximable points on planar curves and a problem of Davenport, Math. Ann., 359 (2014), 9691023.CrossRefGoogle Scholar
Baker, S. Iterated function systems with super-exponentially close cylinders (2019), preprint, available at: https://arxiv.org/pdf/1909.04343Google Scholar
Balka, R. and Peres, Y.. Uniform dimension results for fractional Brownian motion, J. Fractal Geom., 4 (2017), 147183.Google Scholar
Bandt, C. and Graf, S.. Self-similar sets VII. A characterization of self-similar fractals with positive Hausdorff measure, Proc. Amer. Math. Soc., 114 (1992), 9951001.Google Scholar
Bandt, C. and Käenmäki, A.. Local structure of self-affine sets, Ergodic Th. Dynam. Syst., 33 (2013), 13261337.Google Scholar
Barański, K. Hausdorff dimension of the limit sets of some planar geometric constructions, Adv. Math., 210 (2007), 215245.Google Scholar
Barański, K., Bárány, B., and Romanowska, J.. On the dimension of the graph of the classical Weierstrass function, Adv. Math., 265 (2014), 3259.Google Scholar
Bárány, B. On the Ledrappier-Young formula for self-affine measures, Math. Proc. Camb. Phil. Soc., 159 (2015), 405432.Google Scholar
Bárány, B., Hochman, M., and Rapaport, A.. Hausdorff dimension of planar self-affine sets and measures, Invent. Math., 216 (2019a), 601659.Google Scholar
Bárány, B. and Käenmäki, A.. Ledrappier-Young formula and exact dimensionality of self-affine measures, Adv. Math., 318 (2017), 88129.Google Scholar
Bárány, B. and Käenmäki, A.. Superexponential condensation without exact overlaps (2019), preprint, available at: https://arxiv.org/abs/1910.04623Google Scholar
Bárány, B., Käenmäki, A., and Rossi, E.. Assouad dimension of planar self-affine sets (2019b), preprint, available at: https://arxiv.org/pdf/1906.11007Google Scholar
Barnsley, M. F. Fractals Everywhere, Academic Press (1988).Google Scholar
Barnsley, M. F. Superfractals, Cambridge University Press (2006).Google Scholar
Barnsley, M. F. and Demko, S.. Iterated function systems and the global construction of fractals, Proc. Roy. Soc. Lond. Ser. A, 399 (1985), 243275.Google Scholar
Beardon, A. F. The Geometry of Discrete Groups, Graduate texts in mathematics, vol. 91, Springer-Verlag (1983).Google Scholar
Bedford, T. Crinkly curves, Markov partitions and box dimensions in self-similar sets, PhD thesis, University of Warwick (1984).Google Scholar
Beresnevich, V. Badly approximable points on manifolds, Invent. Math., 202 (2015), 11991240.CrossRefGoogle Scholar
Beresnevich, V., Ghosh, A., Simmons, D., and Velani, S.. Diophantine approximation in Kleinian groups: singular, extremal, and bad limit points, J. London Math. Soc., 98 (2018), 306328.CrossRefGoogle Scholar
Berlinkov, A. and Järvenpää, E.. Porosities of Mandelbrot percolation, J. Theoret. Probab., 32 (2019), 608632.CrossRefGoogle Scholar
Besicovitch, A. S. On Kakeya’s problem and a similar one, Math. Z., 27 (1928), 312320.CrossRefGoogle Scholar
Besicovitch, A. S. On the fundamental geometrical properties of linearly measurable plane sets of points, III, Math. Ann., 116 (1939), 349357.Google Scholar
Besicovitch, A. S. and Ursell, H. D.. Sets of fractional dimensions (V): on dimensional numbers of some continuous curves, J. London Math. Soc., 12 (1937), 1825.Google Scholar
Bishop, C. J. and Jones, P. W.. Hausdorff dimension and Kleinian groups, Acta Math., 179 (1997), 139.Google Scholar
Bishop, C. J. and Peres, Y.. Fractals in Probability and Analysis, Cambridge studies in advanced mathematics, vol. 162, Cambridge University Press (2017).Google Scholar
Bouligand, M. G. Ensembles Impropres et Nombre Dimensionnel, Bull. Sci. Math., 52 (1928), 320344, 361376.Google Scholar
Bowditch, B. H. Geometrical finiteness for hyperbolic groups, J. Funct. Anal., 113 (1993), 245317.Google Scholar
Boyd, D. W. The residual set dimension of the Apollonian packing, Mathematika, 20 (1973), 170174.Google Scholar
Broderick, R., Fishman, L., Kleinbock, D., Reich, A., and Weiss, B.. The set of badly approximable vectors is strongly C1 incompressible, Math. Proc. Camb. Philos. Soc., 153 (2012), 319339.Google Scholar
Burrell, S. A. On the dimension and measure of inhomogeneous attractors, Real Anal. Ex., 44 (2019), 199216.Google Scholar
Bylund, P. and Gudayol, J.. On the existence of doubling measures with certain regularity properties, Proc. Amer. Math. Soc., 128 (2000), 33173327.Google Scholar
Chen, H.-P., Du, Y.-L., and Wei, C.. Quasi-lower dimension and quasi-Lipschitz mapping, Fractals, 25 (2017), 1750034–1126.Google Scholar
Chen, H.-P., Wu, M., and Chang, Y.. Lower Assouad-type dimensions of uniformly perfect sets in doubling metric spaces, Fractals, 28 (2020), 2050039.CrossRefGoogle Scholar
Cox, J. T. and Griffin, P. S.. How porous is the graph of Brownian motion, Trans. Amer. Math. Soc., 325 (1991), 119140.Google Scholar
Cutler, C. D. Strong and weak duality principles for fractal dimension in Euclidean space, Math. Proc. Camb. Phil. Soc., 118 (1995), 393410.Google Scholar
Das, T., Fishman, L., Simmons, D., and Urbański, M.. Extremality and dynamically defined measures, part I: Diophantine properties of quasi-decaying measures, Selecta Math., 24 (2017), 21652206.CrossRefGoogle Scholar
Das, T., Fishman, L., Simmons, D., and Urbański, M.. Badly approximable vectors and fractals defined by conformal dynamical systems, Math. Res. Lett., 25 (2018), 437467.Google Scholar
Das, T., Fishman, L., Simmons, D., and Urbański, M.. Badly approximable points on self-affine sponges and the lower Assouad dimension, Ergodic Th. Dynam. Syst., 39 (2019), 638657.Google Scholar
Das, T., Fishman, L., Simmons, D., and Urbański, M.. Extremality and dynamically defined measures, part II: Measures from conformal dynamical systems, Ergodic Th. Dynam. Syst. (2020), 138. doi:10.1017/etds.2020.46Google Scholar
Das, T. and Simmons, D.. The Hausdorff and dynamical dimensions of self-affine sponges: a dimension gap result, Invent. Math., 210 (2017), 85134.Google Scholar
Davenport, H. A note on Diophantine approximation. II, Mathematika, 11 (1964), 5058.Google Scholar
Davies, R. O. Some remarks on the Kakeya problem, Math. Proc. Camb. Phil. Soc., 69 (1971), 417421.Google Scholar
Deng, Q.-R. and Ngai, S.-M.. Conformal iterated function systems with overlaps, Dyn. Syst., 26 (2011), 103123.Google Scholar
van den Dries, L. The field of reals with a predicate for the powers of two, Manuscripta Math., 54 (1985), 187195.Google Scholar
van den Dries, L. and Miller, C.. Geometric categories and o-minimal structures, Duke Math. J., 84 (1996), 497540.Google Scholar
Du, X., Guth, L., Ou, Y., Wang, H., Wilson, B., and Zhang, R.. Weighted restriction estimates and application to Falconer distance set problem (2018), preprint, available at: https://arxiv.org/abs/1802.10186Google Scholar
Du, X. and Zhang, R.. Sharp L2 estimates of the Schrödinger maximal function in higher dimensions, Ann. Math., 189 (2019), 837861.Google Scholar
Dyda, B., Ihnatsyeva, L., Lehrbäck, J., Tuominen, H., and Vähäkangas, A.. Muckenhoupt Ap-properties of distance functions and applications to Hardy-Sobolev-type inequalities, Potential Anal., 50 (2019), 83105.Google Scholar
Dyda, B., Lehrbäck, J., and Vähäkangas, A.. Fractional Hardy-Sobolev type inequalities for half spaces and John domains, Proc. Amer. Math. Soc., 146 (2018), 33933402.Google Scholar
Dynkin, E. M. Free interpolation by functions with derivatives in H1, J. Soviet Math., 27 (1984), 24752481.Google Scholar
Edgar, G. A. Measure, Topology and Fractal Geometry, Springer-Verlag (1990).Google Scholar
Edgar, G. A. Classics on Fractals, Addison-Wesley (1993).Google Scholar
Erdős, P. and Turán, P.. On some sequences of integers, J. Lond. Math. Soc., 11 (1936), 261264.Google Scholar
Falconer, K. J. The Geometry of Fractal Sets, Cambridge University Press (1985a).Google Scholar
Falconer, K. J. On the Hausdorff dimensions of distance sets, Mathematika, 32 (1985b), 206212.Google Scholar
Falconer, K. J. The Hausdorff dimension of self-affine fractals, Math. Proc. Camb. Phil. Soc., 103 (1988), 339350.Google Scholar
Falconer, K. J. Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc., 106 (1989), 543554.Google Scholar
Falconer, K. J. The Hausdorff dimension of self-affine fractals II, Math. Proc. Camb. Phil. Soc., 111 (1992), 169179.Google Scholar
Falconer, K. J. Sub-self-similar sets, Trans. Amer. Math. Soc., 347 (1995), 31213129.Google Scholar
Falconer, K. J. Techniques in Fractal Geometry, John Wiley (1997).CrossRefGoogle Scholar
Falconer, K. J. Dimensions of self-affine sets – a survey, Further Developments in Fractals and Related Fields (Eds. J. Barral and S. Seuret), Birkhäuser (2013a), pp. 115134.Google Scholar
Falconer, K. J. Fractals – A Very Short Introduction, Oxford University Press (2013b).Google Scholar
Falconer, K. J. Fractal Geometry: Mathematical Foundations and Applications, 3rd ed. John Wiley & Sons (2014).Google Scholar
Falconer, K. J. A capacity approach to box and packing dimensions of projections of sets and exceptional directions, J. Fractal Geom., n.d., available at: https://arxiv.org/abs/1901.11014Google Scholar
Falconer, K. J., Fraser, J. M., and Jin, X.. Sixty years of Fractal projections, Fractal Geometry and Stochastics V (Eds. C. Bandt, K. J. Falconer, and M. Zähle), Progress in probability, vol. 37, Birkhäuser (2015).Google Scholar
Falconer, K. J., Fraser, J. M. and Käenmäki, A.. Minkowski dimension for measures (2020), preprint, available at: https://arxiv.org/abs/2001.07055Google Scholar
Falconer, K. J., Fraser, J. M., and Shmerkin, P.. Assouad dimension influences the box and packing dimensions of orthogonal projections (2019), J. Fractal Geom., preprint, available at: https://arxiv.org/abs/1911.04857Google Scholar
Falconer, K. J. and Howroyd, J. D.. Projection theorems for box and packing dimensions, Math. Proc. Camb. Phil. Soc., 119 (1996), 287295.Google Scholar
Falconer, K. J. and Howroyd, J. D.. Packing dimensions of projections and dimension profiles, Math. Proc. Camb. Phil. Soc., 121 (1997), 269286.Google Scholar
Falconer, K. J. and Kempton, T.. Planar self-affine sets with equal Hausdorff, box and affinity dimensions, Ergodic Th. Dynam. Syst., 38 (2018), 13691388.Google Scholar
Falconer, K. J. and Mattila, P.. Strong Marstrand theorems and dimensions of sets formed by subsets of hyperplanes, J. Fractal Geom., 3 (2016), 319329.Google Scholar
Farkas, Á. and Fraser, J. M.. On the equality of Hausdorff measure and Hausdorff content, J. Fractal. Geom., 2 (2015), 403429.Google Scholar
Feng, D.-J. Dimension of invariant measures for affine iterated function systems (2019), preprint, available at: https://arxiv.org/abs/1901.01691Google Scholar
Feng, D.-J. and Wang, Y.. A class of self-affine sets and self-affine measures, J. Fourier Anal. Appl., 11 (2005), 107124.Google Scholar
Ferguson, A., Jordan, T., and Shmerkin, P.. The Hausdorff dimension of the projections of self-affine carpets, Fund. Math., 209 (2010), 193213.Google Scholar
Fish, A. and Paunescu, L.. Unwinding spirals (2016), preprint, available at: https://arxiv.org/pdf/1603.03145Google Scholar
Fraser, J. M. Inhomogeneous self-similar sets and box dimensions, Studia Math., 213 (2012a), 133156.Google Scholar
Fraser, J. M. On the packing dimension of box-like self-affine sets in the plane, Nonlinearity, 25 (2012b), 20752092.Google Scholar
Fraser, J. M. Assouad type dimensions and homogeneity of fractals, Trans. Amer. Math. Soc., 366 (2014), 66876733.Google Scholar
Fraser, J. M. Distance sets, orthogonal projections, and passing to weak tangents, Israel J. Math., 226 (2018), 851875.Google Scholar
Fraser, J. M. Almost arithmetic progressions in the primes and other large sets, Amer. Math. Monthly, 126 (2019a), 553–558.Google Scholar
Fraser, J. M. On Hölder solutions to the spiral winding problem (2019b), preprint, available at: https://arxiv.org/pdf/1905.07563Google Scholar
Fraser, J. M. Interpolating between dimensions, Fractal Geometry and Stochastics VI, to appear, Progress in probability, Birkhäuser (2019c), available at: https://arxiv.org/abs/1905.11274Google Scholar
Fraser, J. M. Regularity of Kleinian limit sets and Patterson-Sullivan measures, Trans. Amer. Math. Soc., 372 (2019d), 49775009.Google Scholar
Fraser, J. M. A nonlinear projection theorem for Assouad dimension and applications (2020), preprint, available at: https://arxiv.org/pdf/2004.12001Google Scholar
Fraser, J. M., Hare, K. E., Hare, K. G., Troscheit, S., and Yu, H.. The Assouad spectrum and the quasi-Assouad dimension: a tale of two spectra, Ann. Acad. Sci. Fenn. Math., 44 (2019a), 379387.Google Scholar
Fraser, J. M., Henderson, A. M., Olson, E. J., and Robinson, J. C.. On the Assouad dimension of self-similar sets with overlaps, Adv. Math., 273 (2015), 188214.Google Scholar
Fraser, J. M. and Howroyd, D. C.. Assouad type dimensions for self-affine sponges, Ann. Acad. Sci. Fenn. Math., 42 (2017), 149174.Google Scholar
Fraser, J. M. and Howroyd, D. C.. On the upper regularity dimensions of measures, Indiana Univ. Math. J., 69 (2020), 685712.CrossRefGoogle Scholar
Fraser, J. M., Howroyd, D. C., Käenmäki, A. and Yu, H.. On the Hausdorff dimension of microsets, Proc. Amer. Math. Soc., 147 (2019b), 49214936.Google Scholar
Fraser, J. M., Howroyd, D. C., and Yu, H.. Dimension growth for iterated sumsets, Math. Z., 293 (2019c), 10151042.Google Scholar
Fraser, J. M. and Jordan, T.. The Assouad dimension of self-affine carpets with no grid structure, Proc. Amer. Math. Soc., 145 (2017), 49054918.Google Scholar
Fraser, J. M. and Jurga, N.. The box dimensions of exceptional self-affine sets in R 3 (2019), preprint, available at: https://arxiv.org/abs/1907.07593Google Scholar
Fraser, J. M. and Käenmäki, A.. Attainable values for the Assouad dimension of projections, Proc. Amer. Math. Soc., 148 (2020), 33933405.Google Scholar
Fraser, J. M., Miao, J. J., and Troscheit, S.. The Assouad dimension of randomly generated fractals, Ergodic Th. Dynam. Syst., 38 (2018), 9821011.Google Scholar
Fraser, J. M., Olson, E. J., and Robinson, J. C.. Some results in support of the Kakeya conjecture, Real Anal. Ex., 42 (2017), 253268.CrossRefGoogle Scholar
Fraser, J. M. and Orponen, T.. The Assouad dimensions of projections of planar sets, Proc. Lond. Math. Soc., 114 (2017), 374398.Google Scholar
Fraser, J. M., Saito, K., and Yu, H.. Dimensions of sets which uniformly avoid arithmetic progressions, Int. Math. Res. Not. (2019d), 44194430.Google Scholar
Fraser, J. M. and Troscheit, S.. The Assouad spectrum of random self-affine carpets (2018), preprint, available at: https://arxiv.org/abs/1805.04643Google Scholar
Fraser, J. M. and Troscheit, S.. Regularity versus smoothness of measures (2019), preprint, available at: https://arxiv.org/abs/1912.07292Google Scholar
Fraser, J. M. and Yu, H.. Arithmetic patches, weak tangents, and dimension, Bull. Lond. Math. Soc., 50 (2018a), 8595.Google Scholar
Fraser, J. M. and Yu, H.. Assouad type spectra for some fractal families, Indiana Univ. Math. J., 67 (2018b), 20052043.Google Scholar
Fraser, J. M. and Yu, H.. New dimension spectra: finer information on scaling and homogeneity, Adv. Math., 329 (2018c), 273328.Google Scholar
Fraser, J. M. and Yu, H.. Approximate arithmetic structure in large sets of integers (2019), preprint, available at: https://arxiv.org/abs/1905.05034Google Scholar
Furstenberg, H. Intersections of Cantor sets and transversality of semigroups, Problems in Analysis, Princeton mathematical series, vol. 31, Princeton University Press (1970), 41–59.Google Scholar
Furstenberg, H. Ergodic fractal measures and dimension conservation, Ergodic Th. Dynam. Syst., 28 (2008), 405422.Google Scholar
Furstenberg, H. Ergodic Theory and Fractal Geometry, CBMS Regional Conference Series in Mathematics, vol. 120, American Mathematical Society (2014).Google Scholar
García, I. Assouad dimension and local structure of self-similar sets with overlaps in R d (2019), preprint, available at: https://arxiv.org/abs/1909.03148Google Scholar
García, I. and Hare, K. E.. Properties of quasi-Assouad dimension (2017), preprint, available at: https://arxiv.org/abs/1703.02526Google Scholar
García, I., Hare, K. E., and Mendivil, F.. Assouad dimensions of complementary sets, Proc. Roy. Soc. Edin. Ser. A, 148(3), (2018), 517540.Google Scholar
García, I., Hare, K. E., and Mendivil, F.. Almost sure Assouad-like dimensions of complementary sets (2019a), preprint, available at: https://arxiv.org/abs/1903.07800Google Scholar
García, I., Hare, K. E., and Mendivil, F.. Intermediate Assouad-like dimensions (2019b), preprint, available at: https://arxiv.org/abs/1903.07155Google Scholar
Gatzouras, D. and Lalley, S. P.. Hausdorff and box dimensions of certain self-affine fractals, Indiana Univ. Math. J., 41 (1992), 533568.Google Scholar
Green, B. and Tao, T.. The primes contain arbitrarily long arithmetic progressions, Ann. Math., 167 (2008), 481547.Google Scholar
Guth, L., Iosevich, A., Ou, Y., and Wang, H.. On Falconer’s distance set problem in the plane, Invent. Math., 219 (2020), 779830.Google Scholar
Hare, K. E., Hare, K. G., and Troscheit, S.. Quasi-doubling of self-similar measures with overlaps, J. Fractal Geom., n.d., available at https://arxiv.org/abs/1807.09198Google Scholar
Hare, K. E., Mendivil, F., and Zuberman, L.. Measures with specified support and arbitrary Assouad dimensions (2019), preprint, available at: https://arxiv.org/abs/1908.04592Google Scholar
Hare, K. E. and Troscheit, S.. Lower Assouad dimension of measures and regularity, Math. Proc. Camb. Phil. Soc., (2019), 137, doi:10.1017/S0305004119000458Google Scholar
Hata, M. On some properties of set-dynamical systems, Proc. Japan Acad. Ser. A, 61 (1985), 99102.Google Scholar
Hausdorff, F. Dimension und äußeres Maß, Math. Ann., 79 (1918), 157179.Google Scholar
Heinonen, J. Lectures on Analysis on Metric Spaces, Springer-Verlag (2001).Google Scholar
Hieronymi, P. and Miller, C.. Metric dimensions and tameness in expansions of the real field, Trans. Amer. Math. Soc., 373 (2019), 849874.Google Scholar
Hochman, M. Dynamics on fractals and fractal distributions (2010), preprint, available at: https://arxiv.org/abs/1008.3731Google Scholar
Hochman, M. On self-similar sets with overlaps and inverse theorems for entropy, Ann. Math., 180 (2014), 773822.Google Scholar
Hochman, M. On Self-similar Sets with Overlaps and Inverse Theorems for Entropy in R d , Memoirs of the American Mathematical Society, vol. 265, no.1267, American Mathematical Society (2020).Google Scholar
Hochman, M. and Rapaport, A.. Hausdorff dimension of planar self-affine sets and measures with overlaps (2019), preprint, available at https://arxiv.org/abs/1904.09812Google Scholar
Hochman, M. and Shmerkin, P.. Local entropy averages and projections of fractal measures, Ann. Math., 175 (2012), 10011059.Google Scholar
Hodges, W. Model Theory, Encyclopedia of mathematics and its applications, vol. 42, Cambridge University Press (1993).Google Scholar
Howie, J. M. Real Analysis, Springer Undergraduate mathematics series, Springer-Verlag London, Ltd. (2001).Google Scholar
Howroyd, D. C. Assouad type dimensions for certain sponges with a weak coordinate ordering condition, J. Fractal Geom., 6 (2019a), 6788.Google Scholar
Howroyd, D. C. Regularity dimensions: quantifying doubling and uniform perfectness (2019b), preprint, available at: https://arxiv.org/abs/1910.14074Google Scholar
Howroyd, D. C. and Yu, H.. Assouad dimension of random processes, Proc. Edin. Math. Soc., 62 (2019), 281290.Google Scholar
Howroyd, J. D. On Hausdorff and packing dimension of product spaces, Math. Proc. Camb. Phil. Soc., 119 (1996), 715727.Google Scholar
Howroyd, J. D. Box and packing dimensions of projections and dimension profiles, Math. Proc. Camb. Phil. Soc., 130 (2001), 135160.Google Scholar
Hu, T. Y. and Lau, K. S.. Fractal dimensions and singularities of the Weierstrass type functions, Trans. Amer. Math. Soc., 335 (1993), 649665.Google Scholar
Hutchinson, J. E. Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713747.Google Scholar
Järvenpää, M. On the upper Minkowski dimension, the packing dimension, and orthogonal projections, Ann. Acad. Sci. Fenn. A Dissertat., 99 (1994).Google Scholar
Järvenpää, E., Järvenpää, M., Käenmäki, A., Rajala, T., Rogovin, S., and Suomala, V.. Packing dimension and Ahlfors regularity of porous sets in metric spaces, Math. Z., 266 (2010), 83105.Google Scholar
Järvi, P. and Vuorinen, M.. Uniformly perfect sets and quasiregular mappings, J. London Math. Soc., 54 (1996), 515529.Google Scholar
Joyce, H. and Preiss, D.. On the existence of subsets of finite positive packing measure, Mathematika, 42 (1995), 1524.Google Scholar
Jordan, T. and Jurga, N.. Self-affine sets with non-compactly supported random perturbations, Ann. Acad. Sci. Fen. Math., 39 (2014), 771785.Google Scholar
Käenmäki, A., Koivusalo, H., and Rossi, E.. Self-affine sets with fibred tangents, Ergodic Th. Dynam. Syst., 37 (2017), 19151934.Google Scholar
Käenmäki, A. and Lehrbäck, J.. Measures with predetermined regularity and inhomogeneous self-similar sets, Ark. Mat., 55 (2017), 165184.Google Scholar
Käenmäki, A., Lehrbäck, J., and Vuorinen, M.. Dimensions, Whitney covers, and tubular neighborhoods, Indiana Univ. Math. J., 62 (2013), 18611889.Google Scholar
Käenmäki, A., Ojala, T., and Rossi, E.. Rigidity of quasisymmetric mappings on self-affine carpets, Int. Math. Res. Not. IMRN, 12 (2018), 37693799.Google Scholar
Käenmäki, A. and Rossi, E.. Weak separation condition, Assouad dimension, and Furstenberg homogeneity, Ann. Acad. Sci. Fenn. Math., 41 (2016), 465490.Google Scholar
Kahane, J.-P. Some Random Series of Functions, 2nd ed., Cambridge studies in advanced mathematics, vol. 5, Cambridge University Press (1985).Google Scholar
Kapovich, M. Kleinian groups in higher dimensions, Geometry and Dynamics of Groups and Spaces (Eds. M. Kapranov, Y. I. Manin, P. Moree, S. Kolyada and L. Potyagailo) Progress in mathematics, vol. 265, Birkhäuser (2008), pp. 487–564.Google Scholar
Katz, N. H. and Tao, T.. Recent progress on the Kakeya conjecture, Publ. Mat., Proceedings of the 6th International Conference on Harmonic Analysis, (2002) 161–179.Google Scholar
Katznelson, Y., Subhashis, N., and Sullivan, D.. On conformal welding homeomorphisms associated to Jordan curves, Ann. Acad. Sci. Fenn. Math., 15 (1990), 293306.Google Scholar
Kaufman, R. On Hausdorff dimension of projections, Mathematika, 15 (1968), 153155.Google Scholar
Kaufman, R. Une propriété métrique du mouvement brownien, C. R. Acad. Sci. Paris Sér. A-B, 268 (1969), A727A728.Google Scholar
Kaufman, R. and Mattila, P.. Hausdorff dimension and exceptional sets of linear transformations, Ann. Acad. Sci. Fenn. Math., 1 (1975), 387392.Google Scholar
Kechris, A. Classical Descriptive Set Theory, Graduate texts in mathematics, vol. 156, Springer-Verlag (1995).CrossRefGoogle Scholar
Keith, S. and Laakso, T.. Conformal Assouad dimension and modulus, Geom. Funct. Anal., 14 (2004), 12781321.Google Scholar
Keleti, T. Are lines much bigger than line segments? Proc. Amer. Math. Soc., 144 (2016), 15351541.Google Scholar
Keleti, T., Nagy, D., and Shmerkin, P.. Squares and their centers, J. Anal. Math., 134 (2018), 643669.Google Scholar
Keleti, T. and Shmerkin, P.. New bounds on the dimensions of planar distance sets, Geom. Funct. Anal., 29 (2019), 18861948.Google Scholar
Kenyon, R. and Peres, Y.. Measures of full dimension on affine-invariant sets, Ergodic Th. Dynam. Syst., 16 (1996), 307323.Google Scholar
Kigami, J. Quasisymmetric modification of metrics on self-similar sets, Geometry and Analysis of Fractals (Eds. D.-J. Feng and K.-S. Lau), Springer proceedings in mathematics and statistics, vol. 88, Springer (2014), pp. 253282.Google Scholar
King, J. F. The singularity spectrum for general Sierpiński carpets, Adv. Math., 116 (1995), 111.Google Scholar
Kleinbock, D. and Weiss, B.. Badly approximable vectors on fractals, Israel J. Math., 149 (2005), 137170.Google Scholar
Kolossváry, I. and Simon, K.. Triangular Gatzouras–Lalley-type planar carpets with overlaps, Nonlinearity, 32 (2019), 32943341.Google Scholar
Konyagin, S. V. and Vol’berg, A. L.. On measures with the doubling condition, Math. USSR-Izv., 30 (1988), 629638.Google Scholar
Korte, R. and Shanmugalingam, N.. Equivalence and self-improvement of p-fatness and Hardy’s inequality, and association with uniform perfectness, Math. Z., 264 (2010), 99110.Google Scholar
Koskela, P. and Zhong, X.. Hardy’s inequality and the boundary size, Proc. Amer. Math. Soc., 131 (2003), 11511158.Google Scholar
Kwapisz, J. Conformal dimension via p-resistance: Sierpiński carpet, preprint (2017).Google Scholar
Laakso, T. Plane with A-weighted metric not bi-Lipschitz embeddable to Rn, Bull. London Math. Soc., 34 (2002), 667676.Google Scholar
Lang, U. and Plaut, C.. Bilipschitz embeddings of metric spaces into space forms, Geom. Dedicata, 87 (2001), 285307.Google Scholar
Larman, D. G. On Hausdorff measure in finite dimensional compact metric spaces, Proc. London Math. Soc. (3), 17 (1967a), 193206.Google Scholar
Larman, D. G. A new theory of dimension, Proc. London Math. Soc. (3), 17 (1967b), 178192.Google Scholar
Lau, K.-S. and Ngai, S.-M.. Multifractal measures and a weak separation property, Adv. Math., 141 (1999), 4596.Google Scholar
Le Donne, E. and Rajala, T.. Assouad dimension, Nagata dimension, and uniformly close metric tangents, Indiana Univ. Math. J., 64 (2015), 2154.Google Scholar
Ledrappier, F. and Young, L.-S.. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. Math., 122 (1985a), 509539.Google Scholar
Ledrappier, F. and Young, L.-S.. The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension, Ann. Math., 122 (1985b), 540574.Google Scholar
Lehrbäck, J. Pointwise Hardy inequalities and uniformly fat sets, Proc. Amer. Math. Soc., 136 (2008), 21932200.Google Scholar
Lehrbäck, J. Hardy inequalities and Assouad dimensions, J. Anal. Math., 131 (2017), 367398.Google Scholar
Lehrbäck, J. Assouad type dimensions and applications, Fractal Geometry and Stochastics VI, to appear, Progress in probability, Birkhäuser (2019).Google Scholar
Lehrbäck, J. and Tuominen, H.. A note on the dimensions of Assouad and Aikawa, J. Math. Soc. Japan, 65 (2013), 343356.Google Scholar
Lehrbäck, J. and Vähäkangas, A.. In between the inequalities of Sobolev and Hardy, J. Funct. Anal., 271 (2016), 330364.Google Scholar
Li, H., Wei, C. and Wen, S.. Doubling property of self-affine measures on carpets of Bedford and McMullen, Indiana Univ. Math. J., 65 (2016), 833865.Google Scholar
, F. and Xi, L.. Quasi-Assouad dimension of fractals, J. Fractal Geom., 3 (2016), 187215.Google Scholar
Luukkainen, J. Assouad dimension: antifractal metrization, porous sets, and homogeneous measures, J. Korean Math. Soc., 35 (1998), 2376.Google Scholar
Luukkainen, J. and Saksman, E.. Every complete doubling metric space carries a doubling measure, Proc. Amer. Math. Soc., 126 (1998), 531534.Google Scholar
Mackay, J. M. Assouad dimension of self-affine carpets, Conform. Geom. Dyn. 15 (2011), 177187.Google Scholar
Mackay, J. M. and Tyson, J. T.. Conformal Dimension: Theory and Application, University lecture series, vol. 54, American Mathematical Society (2010).Google Scholar
Macpherson, D. Notes on o-minimality and variations, Model Theory, Algebra, and Geometry (Eds. D. Haskell, A. Pillay and C. Steinhorn), Mathematical Sciences Research Institute publications, vol. 39, Cambridge University Press (2000), pp. 97–130.Google Scholar
Mandelbrot, B. B. The Fractal Geometry of Nature, Freeman (1982).Google Scholar
Mandelbrot, B. B. and van Ness, J. W.. Fractional Brownian motions, fractional noises and applications, SIAM Review, 10 (1968), 422437.Google Scholar
Margaris, A. Dimensions, Embeddings, and Iterated Function Systems, PhD thesis, The University of Warwick (2019).Google Scholar
Margaris, A. Almost bi-Lipschitz embeddings using covers of balls centred at the origin (2020), preprint, available at: https://arxiv.org/abs/2001.02607Google Scholar
Marstrand, J. M. The dimension of Cartesian product sets. Proc. Cambridge Philos. Soc., 50 (1954a), 198202.Google Scholar
Marstrand, J. M. Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. London Math. Soc. (3), 4 (1954b), 257–302.Google Scholar
Maskit, B. Kleinian Groups, Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences], vol. 287, Springer-Verlag (1988).Google Scholar
Mattila, P. Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. A Math., 1 (1975), 227244.Google Scholar
Mattila, P. Geometry of Sets and Measures in Euclidean Spaces, Cambridge studies in advanced mathematics, vol. 44, Cambridge University Press (1995).Google Scholar
Mattila, P. Recent progress on dimensions of projections, Geometry and Analysis of Fractals (Eds. D.-J. Feng and K.-S. Lau), Springer proceedings in mathematics and statistics, vol. 88, Springer (2014), pp. 283–301.Google Scholar
Mattila, P. Fourier Analysis and Hausdorff Dimension, Cambridge studies in advanced mathematics, vol. 150, Cambridge University Press (2015).Google Scholar
Mattila, P. and Mauldin, R. D.. Measure and dimension functions: measurability and densities, Math. Proc. Camb. Phil. Soc., 121 (1997), 81100.Google Scholar
McLaughlin, J. A note on Hausdorff measures of quasi-self-similar sets, Proc. Amer. Math. Soc., 100 (1987), 183186.Google Scholar
McMullen, C. The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J., 96 (1984), 19.Google Scholar
McMullen, C. Hausdorff dimension and conformal dynamics. III. Computation of dimension, Amer. J. Math., 120 (1998), 691721.Google Scholar
Miller, C. and Speissegger, P.. Expansions of the real field by canonical products, Canadian Math. Bull., (2019), 116. doi:10.4153/S0008439519000572Google Scholar
Moran, P. A. P. Additive functions of intervals and Hausdorff measure, Math. Proc. Camb. Phil. Soc., 42 (1946), 1523.Google Scholar
Mörters, P. and Peres, Y.. Brownian Motion, with an appendix by O. Schramm and W. Werner, Cambridge University Press (2010).Google Scholar
Naor, A. and Neiman, O.. Assouad’s theorem with dimension independent of the snowflaking, Rev. Mat. Iberoamericana, 28 (2012), 121.Google Scholar
Ojala, T. Thin and fat sets: geometry of doubling measures in metric spaces, PhD thesis, University of Jyväskylä (2014).Google Scholar
Olsen, L. A multifractal formalism, Adv. Math., 116 (1995), 82196.Google Scholar
Olsen, L. Self-affine multifractal Sierpiński sponges in Rd, Pacific J. Math., 183 (1998), 143199.Google Scholar
Olsen, L. On the Assouad dimension of graph directed Moran fractals, Fractals, 19 (2011), 221226.Google Scholar
Olsen, L. and Snigireva, N.. Lq spectra and Rényi dimensions of in-homogeneous self-similar measures, Nonlinearity, 20 (2007), 151175.Google Scholar
Olson, E. J. Bouligand dimension and almost Lipschitz embeddings, Pacific J. Math., 202 (2002), 459474.Google Scholar
Olson, E. J. and Robinson, J. C.. Almost bi-Lipschitz embeddings and almost homogeneous sets, Trans. Amer. Math. Soc., 362 (2010), 145168.Google Scholar
Olson, E. and Robinson, J. C.. A simple example concerning the upper box-counting dimension of a cartesian product, Real Anal. Ex., 40 (2015), 449454.Google Scholar
Olson, E. J., Robinson, J. C., and Sharples, N.. Generalised Cantor sets and the dimension of products, Math. Proc. Camb. Phil. Soc., 160 (2016), 5175.Google Scholar
Orponen, T. On the distance sets of Ahlfors-David regular sets, Adv. Math., 307 (2017), 10291045.Google Scholar
Orponen, T. On the Assouad dimension of projections, Proc. Lond. Math. Soc. (2020), to appear, available at: https://arxiv.org/abs/1902.04993Google Scholar
Pansu, P. Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Math., 14 (1989a), 177212.Google Scholar
Pansu, P. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math., 129 (1989b), 160.Google Scholar
Parker, J. R. Kleinian circle packings, Topology, 34 (1995), 489496.Google Scholar
Patterson, S. J. The limit set of a Fuchsian group, Acta Math., 136 (1976), 241273.Google Scholar
Peres, Y., Rams, M., Simon, K., and Solomyak, B.. Equivalence of positive Hausdorff measure and the open set condition for self-conformal sets, Proc. Amer. Math. Soc., 129 (2001), 26892699.Google Scholar
Peres, Y., Simon, K., and Solomyak, B.. Self-similar sets of zero Hausdorff measure and positive packing measure, Israel J. Math., 117 (2000), 353379.Google Scholar
Peres, Y. and Solomyak, B.. Problems on self-similar sets and self-affine sets: an update, Fractal Geometry and Stochastics, II (Greifswald/Koserow, 1998), Progress in Probability, vol. 46, Birkhäuser (2000), pp. 95–106.Google Scholar
Pesin, Y. B. Dimension Theory in Dynamical Systems: Contemporary Views and Applications, University of Chicago Press (1997).Google Scholar
Pinto, de Moura E. and Robinson, J. C.. Orthogonal sequences and regularity of embeddings into finite-dimensional spaces, J. Math. Anal. Appl., 368 (2010), 254262.Google Scholar
Pollicott, M. Apollonius circle counting, London Math. Soc. Newsletter, 478 (2018), 3134.Google Scholar
Przytycki, F. and Urbański, M.. On the Hausdorff dimension of some fractal sets, Studia Math., 93 (1989), 155186.Google Scholar
Rams, M. and Simon, K.. The geometry of fractal percolation, Geometry and Analysis of Fractals (Eds. D.-J. Feng and K.-S. Lau), Springer proceedings in mathematics and statistics, vol. 88, Springer (2014), pp. 303323.Google Scholar
Rams, M. and Simon, K.. Projections of fractal percolations, Ergodic Th. Dynam. Syst., 35 (2015), 530545.Google Scholar
Robinson, J. C. Dimensions, Embeddings, and Attractors, Cambridge University Press (2011).Google Scholar
Robinson, J. C. Log-Lipschitz embeddings of homogeneous sets with sharp logarithmic exponents and slicing products of balls, Proc. Amer. Math. Soc., 142 (2014), 12751288.Google Scholar
Rogers, C. A. Hausdorff Measures, Cambridge University Press (1998).Google Scholar
Roos, J. and Seeger, A.. Spherical maximal functions and fractal dimensions of dilation sets (2020), preprint, available at: https://arxiv.org/abs/2004.00984Google Scholar
Rossi, E. and Suomala, V.. Fractal percolation and quasisymmetric mappings, Int. Math. Res. Not. (2020), https://doi.org/10.1093/imrn/rnaa040Google Scholar
Rudin, W. Principles of Mathematical Analysis, 3rd ed. International series in pure and applied mathematics, McGraw-Hill Book Co. (1976).Google Scholar
Saito, K. Construction of a one-dimensional set which asymptotically and omnidirectionally contains arithmetic progressions, J. Fractal. Geom., n.d., available at: https://arxiv.org/abs/1805.12063Google Scholar
Salli, A. On the Minkowski dimension of strongly porous fractal sets in Rn, Proc. London Math. Soc., 62 (1991), 353372.Google Scholar
Schmidt, W. M. On badly approximable numbers and certain games, Trans. Amer. Math. Soc., 123 (1966), 178199.Google Scholar
Schmidt, W. M. Diophantine Approximation, Lecture notes in mathematics, vol. 785, Springer-Verlag (1980).Google Scholar
Seeger, A., Wainger, S., and Wright, J.. Pointwise convergence of spherical means, Math. Proc. Camb. Phil. Soc., 118 (1995), 115124.Google Scholar
Semmes, S. On the nonexistence of bi-Lipschitz parameterizations and geometric problems about A-weights, Rev. Mat. Iberoamericana, 12 (1996), 337410.Google Scholar
Shen, W.-X. Hausdorff dimension of the graphs of the classical Weierstrass functions, Math. Z., 289 (2017), 144.Google Scholar
Shmerkin, P. On distance sets, box-counting and Ahlfors-regular sets, Discrete Analysis, 9 (2017).Google Scholar
Shmerkin, P. On Furstenberg’s intersection conjecture, self-similar measures, and the Lq norms of convolutions, Ann. Math., 189 (2019a), 319391.Google Scholar
Shmerkin, P. On the Hausdorff dimension of pinned distance sets, Israel J. Math., 230 (2019b), 949972.Google Scholar
Snigireva, N. Inhomogeneous self-similar sets and measures, PhD thesis, University of St Andrews (2008).Google Scholar
Solomyak, B. Measure and dimension for some fractal families, Math. Proc. Camb. Phil. Soc., 124 (1998), 531546.Google Scholar
Stewart, I. and Tall, D.. The Foundations of Mathematics, Oxford University Press (1997).Google Scholar
Stratmann, B. O. and Urbański, M.. The box-counting dimension for geometrically finite Kleinian groups, Fund. Math., 149 (1996), 8393.Google Scholar
Stratmann, B. O. and Velani, S. L.. The Patterson measure for geometrically finite groups with parabolic elements, new and old, Proc. Lond. Math. Soc., 71 (1995), 197220.Google Scholar
Sugawa, T. Uniform perfectness of the limit sets of Kleinian groups, Trans. Amer. Math. Soc., 353 (2001), 36033615.CrossRefGoogle Scholar
Sullivan, D. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., 153 (1984), 259277.Google Scholar
Suomala, V. Intermediate value property for the Assouad dimension of measures (2020), preprint, available at: https://arxiv.org/abs/2001.11306Google Scholar
Szpilrajn, E. (Marczewski). La dimension et la mesure, Fund. Math., 27 (1937), 8189.Google Scholar
Tao, T. Embedding the Heisenberg group into a bounded dimensional Euclidean space with optimal distortion (2018), preprint, available at: https://arxiv.org/abs/1811.09223Google Scholar
Tricot, C. Two definitions of fractional dimension, Math. Proc. Camb. Phil. Soc., 91 (1982), 5774.Google Scholar
Troscheit, S. On quasisymmetric embeddings of the Brownian map and continuum trees (2019), preprint, available at: https://arxiv.org/abs/1912.07291Google Scholar
Troscheit, S. Assouad spectrum thresholds for some random constructions, Canadian Math. Bull., 63 (2020a), 434453.Google Scholar
Troscheit, S. The quasi-Assouad dimension of stochastically self-similar sets, Proc. Roy. Soc. Ed. Sect. A, 150 (2020b), 261275.Google Scholar
Tyson, J. T. Sets of minimal Hausdorff dimension for quasiconformal maps, Proc. Amer. Math. Soc., 128 (2000), 33613367.Google Scholar
Tyson, J. T. Lowering the Assouad dimension by quasisymmetric mappings, Illinois J. Math., 45 (2001), 641656.Google Scholar
Tyson, J. T. and Wu, J.-M.. Quasiconformal dimensions of self-similar fractals, Rev. Mat. Iberoamericana, 22 (2006), 205258.Google Scholar
Urbański, M. Parabolic Cantor sets, Fund. Math., 151 (1996), 241277.Google Scholar
Väisälä, J. Porous sets and quasisymmetric maps, Trans. Amer. Math. Soc., 299 (1987), 525533.Google Scholar
Vassilicos, J. C. and Hunt, J. C. R.. Fractal dimensions and spectra of interfaces with application to turbulence, Proc. Roy. Soc. London Ser. A, 435 (1991), 505534.Google Scholar
Walsberg, E. Externally definable quotients and NIP expansions of the real ordered additive group (2019), preprint, available at: https://arxiv.org/abs/1910.10572Google Scholar
Xi, L.-F. Quasi-Lipschitz equivalence of fractals, Israel J. Math., 160 (2007), 121.Google Scholar
Xiao, Y. Packing dimension of the image of fractional Brownian motion, Statist. Probab. Lett., 33 (1997), 379387.Google Scholar
Xie, F., Yin, Y., and Sun, Y.. Uniform perfectness of self-affine sets, Proc. Amer. Math. Soc., 131 (2003), 30533057.Google Scholar
Yu, H. Assouad type dimensions and dimension spectra for some fractal families, PhD thesis, The University of St Andrews (2019a).Google Scholar
Yu, H. Dimensions of triangle sets, Mathematika, 65 (2019b), 311332.Google Scholar
Yu, H. Weak tangents and level sets of Takagi functions, Monatsh. Math., 192 (2020), 249264.Google Scholar
Zerner, M. P. W. Weak separation properties for self-similar sets, Proc. Amer. Math. Soc., 124 (1996), 35293539.Google Scholar
Zinsmeister, M. Thermodynamic Formalism and Holomorphic Dynamical Systems, SMF/AMS texts and monographs, vol. 2, American Mathematical Society (1996).Google Scholar
Žubrinić, D. and Županović, V.. Box dimension of spiral trajectories of some vector fields in R3, Qual. Theory Dyn. Syst., 6 (2005), 251272.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jonathan M. Fraser, University of St Andrews, Scotland
  • Book: Assouad Dimension and Fractal Geometry
  • Online publication: 13 October 2020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jonathan M. Fraser, University of St Andrews, Scotland
  • Book: Assouad Dimension and Fractal Geometry
  • Online publication: 13 October 2020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jonathan M. Fraser, University of St Andrews, Scotland
  • Book: Assouad Dimension and Fractal Geometry
  • Online publication: 13 October 2020
Available formats
×