Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T12:22:31.988Z Has data issue: false hasContentIssue false

5 - Spontaneous emission of photons and lifetime engineering

from Part I - Basics

Published online by Cambridge University Press:  23 November 2018

Sergey V. Gaponenko
Affiliation:
National Academy of Sciences of Belarus
Hilmi Volkan Demir
Affiliation:
Nanyang Technological University, Singapore
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Applied Nanophotonics , pp. 147 - 187
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further reading

Andrew, P., and Barnes, W. L. (2001). Molecular fluorescence above metallic gratings. Phys Rev B, 64 (12), 125405.CrossRefGoogle Scholar
Barnes, W. L. (1998). Fluorescence near interfaces: the role of photonic mode density. J Mod Optics, 45, 661699.CrossRefGoogle Scholar
Bharadwaj, P., Deutsch, B., and Novotny, L. (2009). Optical antennas. Adv Opt Photonics, 1, 438483.Google Scholar
Biagioni, P., Huang, J. S., and Hecht, B. (2012). Nanoantennas for visible and infrared radiation. Rep Prog Phys, 75, 024402.CrossRefGoogle ScholarPubMed
Bykov, V. P. (1993). Radiation of Atoms in a Resonant Environment. World Scientific.Google Scholar
Cho, K. (2003). Optical Response of Nanostructures: Nonlocal Microscopic Theory. Springer.Google Scholar
De Martini, F., Marrocco, M., Mataloni, P., Crescentini, L., and Loudon, R. (1991). Spontaneous emission in the optical microscopic cavity. Phys Rev A, 43, 2480.Google Scholar
Drexhage, K. H. (1970). Influence of a dielectric interface on fluorescence decay time. J Luminescence, 12, 693701.Google Scholar
Fujita, M., Takahashi, S., Tanaka, Y., Asano, T., and Noda, S. (2005). Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science, 308, 12961298.Google Scholar
Gaponenko, S. V. (2010). Introduction to Nanophotonics. Cambridge University Press, chs. 13 and 14.CrossRefGoogle Scholar
Gaponenko, S. V. (2014). Satyendra Nath Bose and nanophotonics. J Nanophotonics, 8, 087599.Google Scholar
Geddes, C.D., and Lakowicz, J.R. (eds.) (2007). Radiative Decay Engineering. Springer Science & Business Media.Google Scholar
Klimov, V. (2014). Nanoplasmonics. CRC Press.Google Scholar
Klimov, V. V., and Ducloy, M. (2004). Spontaneous emission rate of an excited atom placed near a nanofiber. Phys Rev A, 69, 013812.Google Scholar
Lee, K. G., Eghlidi, H., Chen, X. W., et al. (2012). Spontaneous emission enhancement of a single molecule by a double-sphere nanoantenna across an interface. Opt Express, 20(21), 2333123338.Google Scholar
Oraevskii, A. N. (1994). Spontaneous emission in a cavity. Physics – Uspekhi, 37, 393405.Google Scholar
Parker, G. J. (2010). Biomimetically-inspired photonic nanomaterials. J Mater Sci Mater Electron, 21, 965979.CrossRefGoogle Scholar
Törmä, P., and Barnes, W. L. (2015). Strong coupling between surface plasmon polaritons and emitters. Rep Prog Phys, 78, 013901.Google Scholar

References

Allan, G., and Delerue, C. (2004). Confinement effects in PbSe quantum wells and nanocrystals. Phys Rev B, 70, 245321.Google Scholar
Amos, R. M., and Barnes, W. L. (1997). Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror. Phys Rev B, 55, 7249.Google Scholar
Barnett, S. M., and Loudon, R. (1996). Sum rule for modified spontaneous emission rates. Phys Rev Lett, 77, 24442448.Google Scholar
Bharadwaj, P., Deutsch, B., and Novotny, L. (2009). Optical antennas. Adv Opt Photonics, 1, 438483.Google Scholar
Bose, S. N. (1924). Planck’s Gesetz und Lichtquantenhypothese. Zs. Physik, 26, 178181.Google Scholar
Bunkin, F. V., and Oraevskii, A. N. (1959). ) Spontaneous emission in a cavity. Izvestia Vuzov, Radiophysics, 2, 181188. (In Russian).Google Scholar
Busch, K., von Freymann, G., Linden, S., et al. (2007). Periodic nanostructures for photonics. Phys Rep, 444, 101202.Google Scholar
D’Aguanno, G., Mattiucci, N., Centini, M., Scalora, M., and Bloemer, M. J. (2004). Electromagnetic density of modes for a finite-size three-dimensional structure. Phys Rev E, 69, 057601.Google Scholar
De Martini, F., Innocenti, G., Jacobowitz, G. R., and Mataloni, P. (1987). Anomalous spontaneous emission time in a microscopic optical cavity. Phys Rev Lett, 59, 29552958.Google Scholar
Guzatov, D. V., and Klimov, V. V. (2005). Radiative decay engineering by triaxial nanoellipsoids. Chem Phys Lett, 412, 341346.Google Scholar
Guzatov, D. V., Gaponenko, S. V., and Demir, H. V. (2018a). Plasmonic enhancement of electroluminescence. AIP Advances, 8, 015324.Google Scholar
Guzatov, D. V., Gaponenko, S. V., and Demir, H. V. (2018b). Possible plasmonic acceleration of LED modulation for Li-Fi applications. Plasmonics. DOI 10.1007/s11468-018-0730-6.Google Scholar
Guzatov, D. V., Vaschenko, S. V., Stankevich, V. V., et al. (2012). Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment. J Phys Chem C, 116 (19), 1072310733.Google Scholar
Kinkhabwala, A., Yu, Z., Fan, Sh, et al. (2009). Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nature Phot, 3, 654657.Google Scholar
Klimov, V. V. (2009). Nanoplasmonics. Fizmatlit. (In Russian)Google Scholar
Klimov, V. V., and Letokhov, V. S. (2005). Electric and magnetic dipole transitions of an atom in the presence of spherical dielectric interface. Laser Phys, 15, 6173.Google Scholar
Koenderink, A. F., Kafesaki, M., Soukolis, C. M., and Sandoghdar, V. (2005). Spontaneous emission in the near field of two-dimensional photonic crystals. Opt Lett, 30, 32103212.Google Scholar
Lambropoulos, P., Nikolopoulos, G. M., Nielsen, T. R., and Bay, S. (2000). Fundamental quantum optics in structured reservoirs. Rep Prog Phys, 63, 455503.Google Scholar
Maksymov, I. S., Staude, I., Miroshnichenko, A. E., and Kivshar, Y. S. (2012). Optical Yagi–Uda nanoantennas. Nanophotonics, 1(1), 6581.Google Scholar
Noda, S., Fujita, M., and Asano, T. (2007). Spontaneous-emission control by photonic crystals and nanocavities. Nat Photonics, 1(8), 449458.Google Scholar
Novotny, L., and Hecht, B. (2012). Principles of Nano-Optics. Cambridge University Press.Google Scholar
Purcell, E. M. (1946). Spontaneous emission probabilities at radio frequencies. Phys Rev, 69, 681.Google Scholar
Schubert, E. F. (2006). Light-Emitting Diodes. Cambridge University Press.Google Scholar
Yablonovitch, E., Gmitter, T. J., and Bhat, R. (1988). Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures. Phys Rev Lett, 61, 25462549.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×