Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T12:33:12.775Z Has data issue: false hasContentIssue false

3 - Quantum confinement effects in semiconductors

from Part I - Basics

Published online by Cambridge University Press:  23 November 2018

Sergey V. Gaponenko
Affiliation:
National Academy of Sciences of Belarus
Hilmi Volkan Demir
Affiliation:
Nanyang Technological University, Singapore
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further reading

Alferov, Z. I. (1998). The history and future of semiconductor heterostructures. Semiconductors, 32 (1), 114.Google Scholar
Bányai, L., and Koch, S. W. (1993). Semiconductor Quantum Dots. World Scientific.Google Scholar
Bastard, G. (1988). Wave Mechanics Applied to Semiconductor Heterostructures. Les Editions de Physique.Google Scholar
Bimberg, D., Grundmann, M., and Ledentsov, N. N. (1999). Quantum Dot Heterostructures. John Wiley & Sons.Google Scholar
Carlsson, N., Georgsson, K., Montelius, L., et al. (1995). Improved size homogeneity of InP-on GaInP Stranski–Krastanow islands by growth on a thin GaP interface layer. J Cryst Growth, 156, 2329.Google Scholar
Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., et al. (1997). (CdSe) ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B, 101(46), 94639475.CrossRefGoogle Scholar
Elliott, R. J. (1957). Intensity of optical absorption by excitons. Phys Rev, 108, 13841389.Google Scholar
Gaponenko, S. V. (1998). Optical Properties of Semiconductor Nanocrystals. Cambridge University Press.Google Scholar
Gaponenko, S. V. (2010). Introduction to Nanophotonics. Cambridge University Press.CrossRefGoogle Scholar
Gaponik, N., Hickey, S. G., Dorfs, D., Rogach, A. L., and Eychmüller, A. (2010). Progress in the light emission of colloidal semiconductor nanocrystals. Small, 6, 13641378.Google Scholar
Guzelturk, B., Martinez, P. L. H., Zhang, Q., et al. (2014). Excitonics of semiconductor quantum dots and wires for lighting and displays. Laser Photonics Rev, 8, 7393.Google Scholar
Harrison, P. (2009). Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures. John Wiley & Sons.Google Scholar
Kalt, H., and Hetterich, M. (eds.) (2013). Optics of Semiconductors and Their Nanostructures. Springer Science & Business Media.Google Scholar
Klimov, V. (ed.) (2010). Nanocrystal Quantum Dots. CRC Press.Google Scholar
Klingshirn, C. (ed.) (2001). Semiconductor Quantum Structures: Optical Properties. Part 1. Springer.Google Scholar
Klingshirn, C. (ed.) (2004). Semiconductor Quantum Structures: Optical Properties. Part 2. Springer.Google Scholar
Markov, I. V. (1995). Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy. World Scientific.Google Scholar
Pelá, R. R., Caetano, C., Marques, M., et al. (2011). Accurate band gaps of AlGaN, InGaN, and AlInN alloys calculations based on LDA-1/2 approach. Appl Phys Lett, 98, 151907.CrossRefGoogle Scholar
Rogach, A. (ed.) (2008). Semiconductor Nanocrystal Quantum Dots. Springer.Google Scholar
Ustinov, V. M. (2003). Quantum Dot Lasers. Oxford University Press.Google Scholar
Woggon, U. (1997). Optical Properties of Semiconductor Quantum Dots. Springer.Google Scholar

References

Achtstein, A. W., Schliwa, A., Prudnikau, A., et al. (2012). Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett, 12, 31513157.CrossRefGoogle ScholarPubMed
Akiyama, H., Yoshita, M., Pfeiffer, L. N., West, K. W., and Pinczuk, A. (2003). One-dimensional continuum and exciton states in quantum wires. Appl Phys Lett, 82, 379381.Google Scholar
Artemyev, M. V., Bibik, A. I., Gurinovich, L. I., Gaponenko, S. V., and Woggon, U. (1999). Evolution from individual to collective electron states in a dense quantum dot ensemble. Phys Rev B, 60, 15041507.Google Scholar
Artemyev, M. V., Bibik, A. I., Gurinovich, L. I., et al. (2001). Optical properties of dense and diluted ensembles of semiconductor quantum dots. Physica Status Solidi (b), 224, 393396.Google Scholar
Bayer, M., Walck, S. N., Reinecke, T. L., and Forchel, A. (1998). Exciton binding energies and diamagnetic shifts in semiconductor quantum wires and quantum dots. Phys Rev B, 57, 65846591.Google Scholar
Brus, L. E. (1984). Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys, 80, 44034409.Google Scholar
Chemla, D. S., and Miller, D. A. (1985). Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures. J Opt Soc, Amer B, 2, 11551173.CrossRefGoogle Scholar
Efros, A.L., and Efros, A.L. (1982). Interband absorption of light in a semiconductor sphere. Soviet Physics Semiconductors-USSR, 16, 772775.Google Scholar
Empedocles, S. A., Norris, D. J., and Bawendi, M. G. (1996). Photoluminescence spectroscopy of single CdSe quantum dots. Phys Rev Lett, 77, 38733876.Google Scholar
Gaponenko, S. V. (1998). Optical Properties of Semiconductor Nanocrystals. Cambridge University Press.Google Scholar
Gaponenko, S., Woggon, U., Saleh, M., et al. (1993). Nonlinear-optical properties of semiconductor quantum dots and their correlation with the precipitation stage. J Opt Soc Amer B, 10, 19471955.Google Scholar
Göbel, E. O., and Ploog, K. (1990). Fabrication and optical properties of semiconductor quantum wells and superlattices. Progress in Quantum Electronics, 14, 289356.Google Scholar
He, X. F. (1991). Excitons in anisotropic solids: the model of fractional-dimensional space. Phys Rev B, 43, 20632069.CrossRefGoogle ScholarPubMed
Kasap, S. O. (2002). Principles of Electronic Materials and Devices, 2nd edn. McGraw-Hill.Google Scholar
Keldysh, L. V. (1979). Coulomb interaction in thin semiconductor and semimetal films. J Exp Theor Phys, 29, 658662.Google Scholar
Kudera, S., Zanella, M., Giannini, C., et al. (2007). Sequential growth of magic size CdSe nanocrystals. Adv Mater, 19, 548552.CrossRefGoogle Scholar
Ledentsov, N. N. (2011). Quantum dot laser. Semicond Sci Technol, 26, 014001.Google Scholar
Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S. I. (1995). High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes. Appl Phys Lett, 67, 18681870.Google Scholar
Norris, D. J., and Bawendi, M. G. (1996). Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys Rev B, 53, 1633616342.Google Scholar
Ogawa, T., and Takagahara, T. (1991). Optical absorption and Sommerfeld factors of one-dimensional semiconductors: an exact treatment of excitonic effects. Phys Rev B, 44, 81388144.Google Scholar
Ralph, H. I. (1965). The electronic absorption edge in layer type crystals. Solid State Commun, 3, 303306.CrossRefGoogle Scholar
Schmidt, H. M., and Weller, H. (1986). Quantum size effects in semiconductor crystallites: calculation of the energy spectrum for the confined excitonChem Phys Lett129(6), 615618.Google Scholar
Sell, D. D., and Casey, Jr., H. C. (1974). Optical absorption and photoluminescence studies of thin GaAs layers in GaAs–AlxGa1–xAs double heterostructures. J Appl Phys, 45(2), 800807.Google Scholar
Straubinger, R., Beyer, A., and Volz, K. (2016). Preparation and loading process of single crystalline samples into a gas environmental cell holder for in situ atomic resolution scanning transmission electron microscopic observation. Microsc Microanalysis, 22, 515519.CrossRefGoogle ScholarPubMed
Thoai, D. T., Hu, Y. Z., and Koch, S. W. (1990). Influence of the confinement potential on the electron–hole-pair states in semiconductor microcrystallites. Phys Rev B, 42, 1126111270.CrossRefGoogle ScholarPubMed
Woggon, U., and Gaponenko, S. V. (1995). Excitons in quantum dots. Phys Stat Sol (b), 189, 286343.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×