Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T12:32:26.008Z Has data issue: false hasContentIssue false

7 - Energy transfer processes

from Part I - Basics

Published online by Cambridge University Press:  23 November 2018

Sergey V. Gaponenko
Affiliation:
National Academy of Sciences of Belarus
Hilmi Volkan Demir
Affiliation:
Nanyang Technological University, Singapore
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Applied Nanophotonics , pp. 210 - 226
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further reading

Agranovich, V. M., Gartstein, Y. N., and Litinskaya, M. (2011). Hybrid resonant organic–inorganic nanostructures for optoelectronic applications. Chem Reviews, 111, 51795214.Google Scholar
Clegg, R. M. (2009). Förster resonance energy transfer – FRET what is it, why do it, and how it’s done. In: Gadella, T. W. J. (ed.), Laboratory Techniques in Biochemistry and Molecular Biology, vol. 33. Academic Press.Google Scholar
Govorov, A., Hernández-Martínez, P. L., and Demir, H. V. (2016). Understanding and Modeling of Förster-type Resonance Energy Transfer (FRET), vols. I–III. Springer.Google Scholar
Valeur, B., and Berberan-Santos, M. N. (2012). Molecular Fluorescence: Principles and Applications, 2nd edn. Wiley-VCH.Google Scholar

References

Agranovich, V. M., Gartstein, Y. N., and Litinskaya, M. (2011). Hybrid resonant organic–inorganic nanostructures for optoelectronic applications. Chem Reviews, 111, 51795214.Google Scholar
Baer, R., and Rabani, E. (2008). Theory of resonance energy transfer involving nanocrystals: the role of high multipoles. J Chem Phys, 128, 184710.Google Scholar
Beard, M. C. (2011). Multiple exciton generation in semiconductor quantum dots. J Phys Chem Lett, 2, 12821288.Google Scholar
Born, M., and Wolf, E. (1999). Principles of Optics. 7th edn. Cambridge University Press.Google Scholar
Bredas, J.-L., and Silbey, R. (2009). Excitons surf along conjugated polymer chains. Science, 323, 348349.Google Scholar
Clegg, R. M. (1996). Fluorescence resonance energy transfer. In: Wang, X.F. and Herman, B. (eds.), Fluorescence Imaging Spectroscopy and Microscopy. John Wiley & Sons, 179252.Google Scholar
Clegg, R. M. (2009). Förster resonance energy transfer – FRET what is it, why do it, and how it’s done. In: Gadella, T. W. J. (ed.), Laboratory Techniques in Biochemistry and Molecular Biology, vol. 33. Academic Press.Google Scholar
Dexter, D. L. (1953). A theory of sensitized luminescence in solids. J Chem Phys, 21, 836850.Google Scholar
Förster, Th (1946). Energieanwenderung und fluoreszenz. Naturwissenschaften, 6, 166175.Google Scholar
Förster, Th (1948). Zwischenmolekulare energiewanderung und fluoreszens. Annalen der Physik, 437, 5575.Google Scholar
Förster, Th (1949). Expermentelle und theoretische untersuchtung des zwischengmolekularen übergangs von elektronenanregungsenergie. Z Elektrochem, 53, 93100.Google Scholar
Förster, Th (1951). Fluoreszenz Organischer Verbindungen. Vandenhoeck & Ruprecht.Google Scholar
Hernández-Martínez, P. L., Govorov, A. O., and Demir, H. V. (2013). Generalized theory of Förster-type nonradiative energy transfer in nanostructures with mixed dimensionality. J Phys Chem C, 117, 1020310212.Google Scholar
Klimov, V. I., Mikhailovsky, A. A., Xu, S., et al. (2000). Optical gain and stimulated emission in nanocrystal quantum dots. Science, 290, 314317.Google Scholar
Köhler, A., and Bassler, H. (2009). Triplet states in organic semiconductors. Mater Sci Eng, R66, 71109.Google Scholar
Lakowicz, J. R. (2010). Principles of Fluorescence Spectroscopy. 3rd edn. Springer.Google Scholar
Nozik, A. J. (2008). Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett, 457, 311.Google Scholar
O’Regan, B., and Grätzel, M. (1991). A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737740.Google Scholar
Saricifcti, N. S., Smilowitz, L., Heeger, A. J., and Wudl, F. (1992). Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 258, 14741476.Google Scholar
Stryer, L., and Haugland, R. P. (1967). Energy transfer: a spectroscopic ruler. PNAS, 58, 719726.Google Scholar
Valeur, B. (2002). Molecular Fluorescence: Principles and Applications. Wiley-VCH.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×