Published online by Cambridge University Press: 05 June 2012
Integration of the Strains to Obtain Displacements
There are two aspects to the following discussion of strains and displacements. The first aspect is an outline of the process that is the general integration of the six strains to obtain the three displacements. The second aspect is the redirection of the series of equations developed during the process of obtaining the displacements towards the second goal, which is the partial differential equations that relate the strains to each other. The equations that relate the strains are called the compatibility equations. In this textbook, the compatibility equations are of more immediate concern than the process of integrating the strains to obtain the displacements. As is proved in Endnote (1) of Chapter 3 there are six second order compatibility equations that occur in two sets or three equations of similar form. The second of the two sets of three compatibility equations is rederived here because the form of those compatibility equations is less obvious than that of the first set.
Throughout the process begun below for obtaining the displacements from the strains, it is of course presumed that the strains are known functions of the cartesian coordinates, and if necessary, time as well. The process begins with the first order partial differential equations that are the linear form of the strain–displacement equations.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.