Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T04:30:42.674Z Has data issue: false hasContentIssue false

6 - Shear Flow Dispersion

Published online by Cambridge University Press:  02 February 2023

Tian-Chyi Jim Yeh
Affiliation:
University of Arizona
Yanhui Dong
Affiliation:
Chinese Academy of Sciences, Beijing
Shujun Ye
Affiliation:
Nanjing University, China
Get access

Summary

This chapter is the most crucial part of the book, the fundamental building block of the concept of dispersion in porous media and macrodispersion in the field-scale aquifers. It unravels the myth of macrodispersion, anomalous dispersion, scale-dependent dispersion, dual-domain, and other recently developed dispersion models for solute transport in aquifers (Chapters 9 and 10). This chapter first explains how the concept of dispersion evolves from molecular diffusion to account for the effects of fluid-dynamics-scale velocity variation in solute migration in a pipe. The relationship between dispersion and the concentration averaged over the cross-section of a pipe is visited. Further, this chapter illustrates the molecular and fluid-dynamics-scale velocity variations, the interaction between diffusion and dispersion, and scale issues associated with the shear flow dispersion. Finally, it discusses the limitations of extending Fick’s law for molecular-scale velocity variations to describe the effects of fluid-dynamics-scale velocity variations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Shear Flow Dispersion
  • Tian-Chyi Jim Yeh, University of Arizona, Yanhui Dong, Chinese Academy of Sciences, Beijing, Shujun Ye, Nanjing University, China
  • Book: An Introduction to Solute Transport in Heterogeneous Geologic Media
  • Online publication: 02 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781009049511.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Shear Flow Dispersion
  • Tian-Chyi Jim Yeh, University of Arizona, Yanhui Dong, Chinese Academy of Sciences, Beijing, Shujun Ye, Nanjing University, China
  • Book: An Introduction to Solute Transport in Heterogeneous Geologic Media
  • Online publication: 02 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781009049511.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Shear Flow Dispersion
  • Tian-Chyi Jim Yeh, University of Arizona, Yanhui Dong, Chinese Academy of Sciences, Beijing, Shujun Ye, Nanjing University, China
  • Book: An Introduction to Solute Transport in Heterogeneous Geologic Media
  • Online publication: 02 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781009049511.007
Available formats
×