Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-03T08:47:18.122Z Has data issue: false hasContentIssue false

13 - Tori Acting on Schemes

Published online by Cambridge University Press:  25 October 2017

J. S. Milne
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Schemes with an action of a torus arise frequently in the theory of algebraic groups. In this chapter, we prove the basic theorems concerning such actions. In particular, we prove the Białynicki-Birula decomposition (13.47), which will allow us to show that the Bruhat decomposition exists on the level of scheme

Throughout, all schemes are algebraic over the field k. Recall that all algebraic groups are affine.

The smoothness of the fixed subscheme

Recall that tori are linearly reductive.

THEOREM 13.1. Let G be a linearly reductive group variety acting on a smooth variety X over k. Then the fixed-point scheme XGis smooth.

We shall need to use some basic results on regular local rings.

Let A be a local ring with maximal ideal m and residue field. Let d denote the Krull dimension of A. Every set of generators for m has at least d elements. If there exists a set with d elements, then A is said to be regular, and a set of generators with d elements is called a regular system of parameters for A (Matsumura 1986, p. 105).

  • (a)A local ring A is regular if and only if the canonical map

  • is an isomorphism (Matsumura 1986, 14.4).

  • (b) Assume that A is regular. Let be a regular system of parameters for A, and let for some. Then is local of dimension its maximal ideal is generated by, and so is regular. Every regular quotient of A is of this form (Matsumura 1986, 14.2).

  • We require several lemmas.

    LEMMA 13.3. Let A be a regular local ring of dimension d and m the maximal ideal in A. Let a be an ideal in A, and let. If, for every, there exists a regular system of parameters for A such that

    then is regular (of dimension).

    PROOF. Let, and let n denote the maximal ideal of B.

    Type
    Chapter
    Information
    Algebraic Groups
    The Theory of Group Schemes of Finite Type over a Field
    , pp. 254 - 278
    Publisher: Cambridge University Press
    Print publication year: 2017

    Access options

    Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

    Save book to Kindle

    To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

    Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    • Tori Acting on Schemes
    • J. S. Milne, University of Michigan, Ann Arbor
    • Book: Algebraic Groups
    • Online publication: 25 October 2017
    • Chapter DOI: https://doi.org/10.1017/9781316711736.015
    Available formats
    ×

    Save book to Dropbox

    To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

    • Tori Acting on Schemes
    • J. S. Milne, University of Michigan, Ann Arbor
    • Book: Algebraic Groups
    • Online publication: 25 October 2017
    • Chapter DOI: https://doi.org/10.1017/9781316711736.015
    Available formats
    ×

    Save book to Google Drive

    To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

    • Tori Acting on Schemes
    • J. S. Milne, University of Michigan, Ann Arbor
    • Book: Algebraic Groups
    • Online publication: 25 October 2017
    • Chapter DOI: https://doi.org/10.1017/9781316711736.015
    Available formats
    ×