Book contents
V - Jordan algebras
Published online by Cambridge University Press: 07 November 2024
Summary
This chapter will develop from scratch the elementary theory of (quadratic) Jordan algebras over commutative rings. After a brief account of linear Jordan algebras and their most rudimentary properties over rings in which 2 is invertible, we proceed to para-quadratic algebras, which play the same role in the quadratic setting as is played by ordinary nonassociative algebras in the linear setting. Quadratic Jordan algebras are introduced. We derive a wide range of useful identities and acquaint the reader with the standard examples of special Jordan algebras, namely the Jordan algebra constructed from a unital associative algebra, from an associative algebra with involution, or from a pointed quadratic module. After a brief interlude concerning a peculiar class of two-variable identities, we investigate what are arguably the most important concepts of the theory: invertibility, isotopy, and the structure group. The chapter concludes with a concise description of the Peirce decomposition relative to an idempotent, and also relative to a complete orthogonal system of idempotents.
Keywords
- Type
- Chapter
- Information
- Albert Algebras over Commutative RingsThe Last Frontier of Jordan Systems, pp. 252 - 316Publisher: Cambridge University PressPrint publication year: 2024