We discuss the dyadic John–Nirenberg space that is a generalization of functions of bounded mean oscillation. A John–Nirenberg inequality, which gives a weak type estimate for the oscillation of a function, is discussed in the setting of medians instead of integral averages. We show that the dyadic maximal operator is bounded on the dyadic John–Nirenberg space and provide a method to construct nontrivial functions in the dyadic John–Nirenberg space. Moreover, we prove that the John–Nirenberg space is complete. Several open problems are also discussed.