
Proceedings of the Royal Society of Edinburgh, 153, 1–18, 2023

DOI:10.1017/prm.2021.66

Dyadic John–Nirenberg space

Juha Kinnunen and Kim Myyryläinen
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We discuss the dyadic John–Nirenberg space that is a generalization of functions of
bounded mean oscillation. A John–Nirenberg inequality, which gives a weak type
estimate for the oscillation of a function, is discussed in the setting of medians
instead of integral averages. We show that the dyadic maximal operator is bounded
on the dyadic John–Nirenberg space and provide a method to construct nontrivial
functions in the dyadic John–Nirenberg space. Moreover, we prove that the
John–Nirenberg space is complete. Several open problems are also discussed.
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1. Introduction

The space of functions of bounded mean oscillation (BMO) was introduced by John
and Nirenberg in [19]. Let Q0 be a cube with sides parallel to the coordinate axis
in Rn. A function f ∈ L1(Q0) belongs to BMO(Q0) if

sup−
∫

Q

|f − fQ|dx < ∞, (1.1)

where the supremum is taken over all subcubes of Q0. Throughout, we denote
the integral average over a cube by a barred integral sign or fQ. A more general
BMO-type space was also discussed in [19]. A function f ∈ L1(Q0) belongs to the
John–Nirenberg space JNp(Q0), 1 < p < ∞, if

sup
∞∑

i=1

|Qi|
(
−
∫

Qi

|f − fQi
|dx

)p

< ∞, (1.2)

where the supremum is taken over countable collections {Qi}i∈N of pairwise disjoint
subcubes of Q0. The space BMO(Q0) is obtained as the limit of JNp(Q0) as p → ∞.
John [18] considered a way to define BMO(Q0) for any measurable function f on
Q0 and this approach has been developed further by Strömberg [27] and Jawerth
and Torchinsky [17]. In this case, (1.1) is replaced with

sup inf
c∈R

inf{a � 0 : |{x ∈ Q : |f(x) − c| > a}| < s|Q|} < ∞, (1.3)
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2 J. Kinnunen and K. Myyryläinen

where the supremum is taken over all subcubes of Q0 and s is a fixed parameter with
0 < s � 1. Perhaps, the most common parameter value is s = 1

2 and, for 0 < s � 1,
we obtain a biased notion of s-median. Medians have been studied and applied in
many problems; see for example [7, 8, 10–18, 20–22, 25, 27–29].

This paper discusses several new results related to the definition and proper-
ties of the John–Nirenberg space with s-medians (definition 3.1). In particular,
this extends the median approach of BMO in (1.3) to John–Nirenberg spaces. We
restrict our attention to the dyadic case, that is, the cubes in (1.2) are assumed
to be dyadic subcubes of Q0. The dyadic structure has many advantages in the
theory of John–Nirenberg spaces. For some of our results, it does not matter
whether we consider dyadic cubes or all subcubes of Q0, but some results hold
exclusively for dyadic cubes. We study a John–Nirenberg inequality for the dyadic
John–Nirenberg space with s-medians (theorem 3.5). Our proof is based on rela-
tively standard arguments. Related questions on metric measure spaces have been
studied by Lerner and Pérez [22] and Myyryläinen [23]. We reconsider dyadic ver-
sions of these results in the Euclidean context. As a consequence (corollary 3.7), we
show that the dyadic John–Nirenberg space with medians coincides with the dyadic
John–Nirenberg space with integral averages. Thus, it does not matter which one
we consider. However, assumptions in the median approach are initially weaker,
since the function does not need to be integrable.

Bennett et al. [2] showed that the Hardy–Littlewood maximal operator is
bounded on BMO. For a short proof, we refer to Chiarenza and Frasca [4]. We
show that the dyadic maximal operator is bounded on the dyadic John–Nirenberg
space JNd

p (Q0) (theorem 4.2). To our knowledge, this result is new. The proof is
based on the John–Nirenberg inequality. A similar argument, with the weak type
estimate for the maximal operator, gives an L1 result for the dyadic maximal oper-
ator (theorem 4.3). Using this result together with a theorem of Stein [26], we
obtain a method to construct functions in JNd

p (Q0) \ Lp(Q0). This complements
results by Dafni et al. [6] in the dyadic case. Motivated by theorem 4.3, it is an open
question whether there exists a Coifman–Rochberg [5] type characterization for the
dyadic John–Nirenberg space. A one-dimensional example in § 4 demonstrates that
the L1 result in its generality does not hold for the standard John–Nirenberg space.
The standard BMO is complete with respect to the BMO seminorm; see [24]. We
prove that the dyadic John–Nirenberg space is complete (theorem 5.1). This also
holds for the standard John–Nirenberg space JNp(Q0). The connection between
the dyadic BMO and the standard BMO has been studied by Garnett and Jones
in [9]. The corresponding result is also true for the John–Nirenberg spaces.

2. Preliminaries

The Lebesgue measure of a measurable subset A of Rn is denoted by |A|. The
integral average of f ∈ L1(A) in A, with 0 < |A| < ∞, is denoted by

fA = −
∫

A

f dx =
1
|A|

∫
A

f dx.

In many cases, it is preferable to consider medians instead of integral averages.
Let 0 < s � 1. Assume that A ⊂ Rn is a measurable set with 0 < |A| < ∞ and that
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Dyadic John–Nirenberg space 3

f : A → [−∞,∞] is a measurable function. A number a ∈ R is called an s-median
of f over A, if

|{x ∈ A : f(x) > a}| � s|A| and |{x ∈ A : f(x) < a}| � (1 − s)|A|.
In general, the s-median is not unique. To obtain a uniquely defined notion, we
consider the maximal s-median as in [25].

Definition 2.1. Let 0 < s � 1. Assume that A ⊂ Rn is a measurable set with
0 < |A| < ∞ and that f : A → [−∞,∞] is a measurable function. The maximal
s-median of f over A is defined as

ms
f (A) = inf{a ∈ R : |{x ∈ A : f(x) > a}| < s|A|}.

The maximal s-median of a function is an s-median [25]. In the next lemma,
we list the basic properties of the maximal s-median. We refer to [23] where the
properties are proven in metric measure spaces. The arguments are identical for
Euclidean spaces. The proofs of properties (i), (ii), (v), (vii), (viii) and (ix) can also
be found in [25]. In addition, most of these properties are listed without proofs in
[14, 15].

Lemma 2.2. Let 0 < s � 1. Assume that A ⊂ Rn is a measurable set with 0 < |A| <
∞ and that f, g : A → [−∞,∞] is a measurable function. The maximal s-median
has the following properties.

(i) ms′
f (A) � ms

f (A) for s � s′.

(ii) ms
f (A) � ms

g(A) whenever f � g μ-almost everywhere in A.

(iii) If A ⊂ A′ and |A′| � c|A| with some c � 1, then ms
f (A) � m

s/c
f (A′).

(iv) ms
ϕ◦f (A) = ϕ(ms

f (A)) for an increasing continuous function ϕ : f(A) →
[−∞,∞].

(v) ms
f (A) + c = ms

f+c(A) for c ∈ R.

(vi) ms
cf (A) = cms

f (A) for c > 0.

(vii) |ms
f (A)| � m

min{s,1−s}
|f | (A).

(viii) ms
f+g(A) � mt1

f (A) + mt2
g (A) whenever t1 + t2 � s.

(ix) For f ∈ Lp(A) and p > 0,

ms
|f |(A) �

(
s−1−
∫

A

|f |p dx

)1/p

.

(x) If Ai are pairwise disjoint for every i ∈ N, then

inf
i

ms
f (Ai) � ms

f

( ∞⋃
i=1

Ai

)
� sup

i
ms

f (Ai).
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4 J. Kinnunen and K. Myyryläinen

Remark 2.3. Assume that 0 < s � 1
2 . Then property (vii) assumes a slightly

simpler form

|ms
f (A)| � m

min{s,1−s}
|f | (A) = ms

|f |(A),

since

m1−s
|f | (A) � ms

|f |(A)

for 0 < s � 1
2 .

A cube Q is a bounded interval in Rn, with sides parallel to the coordinate axes
and equally long, that is, Q = [a1, b1] × · · · × [an, bn] with b1 − a1 = · · · = bn − an.
The side length of Q is l(Q) = b1 − a1. In case we want to specify the centre of a
cube, we write Q = Q(x, r) = {y ∈ Rn : |yi − xi| � r, i = 1, . . . , n} for x ∈ Rn and
r > 0. We consider closed cubes, but the results hold for open and half open cubes
as well.

Let Q0 ⊂ Rn be a cube. The dyadic decomposition D(Q0) of Q0 is defined as
D(Q0) =

⋃∞
j=0 Dj(Q0), where each Dj(Q0) consists of 2jn cubes Q, with pair-

wise disjoint interiors and side length l(Q) = 2−j l(Q0), such that Q0 =
⋃{Q : Q ∈

Dj(Q0)} for every j ∈ N0. If j � 1 and Q ∈ Dj(Q0), there exists a unique cube
Q′ ∈ Dj−1(Q0) with Q ⊂ Q′. The cube Q′ is called the dyadic parent of Q, and Q
is a dyadic child of Q′.

We recall the Lebesgue differentiation theorem for medians. The proof can be
found in [25].

Lemma 2.4. Let f : Rn → [−∞,∞] be a measurable function which is finite almost
everywhere in Rn and 0 < s � 1. Then

lim
i→∞

ms
f (Qi) = f(x)

for almost every x ∈ Rn, whenever (Qi)i∈N is a sequence of (dyadic) cubes
containing x such that limi→∞ |Qi| = 0.

We discuss a Calderón–Zygmund decomposition with medians instead of integral
averages. The proof is a simple modification of the corresponding argument for
integral averages in [19].

Lemma 2.5. Let Q0 ⊂ Rn be a cube and 0 < t � 1. Assume that f : Q0 → [−∞,∞]
is a measurable function. For every λ � mt

|f |(Q0), there exist dyadic cubes Qi ∈
D(Q0), i ∈ N, with pairwise disjoint interiors, such that

(i) mt
|f |(Qi) > λ,

(ii) mt
|f |(Q

′
i) � λ where Q′

i is the dyadic parent of Qi,

(iii) |f(x)| � λ for almost every x ∈ Q0 \
⋃∞

i=1 Qi.

The collection {Qi}i∈N is called the Calderón–Zygmund cubes in Q0 at level λ.
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Proof. Consider the collection

Fλ = {Q ∈ D(Q0) : mt
|f |(Q) > λ}.

For every x ∈ ⋃Q∈Fλ
Q, there exists a cube Q ∈ Fλ with x ∈ Q and mt

|f |(Q) >
λ. It follows that there exists a unique maximal cube Qx ∈ Fλ with x ∈ Qx and
mt

|f |(Qx) > λ. Maximality means that if Qx � Q ∈ D(Q0), then mt
|f |(Q) � λ. Let

{Qi}i∈N be the subcollection of Fλ of such maximal cubes. If Qx = Q0 for some x ∈
Q0, then Fλ = {Q0} and there are no cubes Q ∈ D(Q0) with Qx � Q. This happens
if and only if λ < mt

|f |(Q0), which contradicts the assumption λ � mt
|f |(Q0).

For two dyadic subcubes of Q0, it holds that either one is contained in the other
or the cubes have pairwise disjoint interiors. Thus, the collection {Qi}i∈N consists
of cubes with pairwise disjoint interiors with mt

|f |(Qi) > λ, i ∈ N. This proves (i).
By maximality, it holds that mt

|f |(Q
′
i) � λ for every i ∈ N, where Q′

i is the dyadic
parent of Qi. This implies (ii). To prove (iii), assume that x ∈ Q0 \

⋃∞
i=1 Qi. We

have mt
|f |(Q) � λ for every dyadic subcube Q of Q0 containing x. Hence, there exist

a decreasing sequence of dyadic subcubes Qk such that x ∈ Qk for every k ∈ N and
Qk+1 � Qk. The Lebesgue differentiation theorem for medians (lemma 2.4) implies
that

|f(x)| = lim
k→∞

mt
|f |(Qk) � λ.

for almost every point x ∈ Q0 \
⋃∞

i=1 Qi. �

3. John–Nirenberg inequality with medians

This section discusses the John–Nirenberg inequality for median-type John–
Nirenberg spaces.

Definition 3.1. Let Q0 ⊂ Rn be a cube, 1 < p < ∞ and 0 < s � 1
2 , and assume

that f : Q0 → [−∞,∞] is a measurable function. We say that f belongs to the
median-type dyadic John–Nirenberg space JNd

p,0,s(Q0) if

‖f‖p

JNd
p,0,s(Q0)

= sup
∞∑

i=1

|Qi|
(

inf
ci∈R

ms
|f−ci|(Qi)

)p

< ∞,

where the supremum is taken over countable collections {Qi}i∈N of pairwise disjoint
dyadic subcubes of Q0.

The constants ci in the definition of JNd
p,0,s can be replaced by maximal t-

medians with 0 < s � t � 1
2 . A simple proof can be found in [23]. For more on the

median-type John–Nirenberg space, see [23].

Lemma 3.2. Let Q0 ⊂ Rn be a cube and assume that f : Q0 → [−∞,∞] is a
measurable function. It holds that

‖f‖p

JNd
p,0,s(Q0)

� sup
∞∑

i=1

|Qi|
(
ms

|f−mt
f (Qi)|(Qi)

)p

� 2p‖f‖p

JNd
p,0,s(Q0)

,

whenever 0 < s � t � 1
2 .
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6 J. Kinnunen and K. Myyryläinen

Definition 3.3. Let Q0 ⊂ Rn be a cube and 0 < t � 1, and assume that f : Q0 →
[−∞,∞] is a measurable function. The median-type dyadic maximal function is
defined by

Md,t
Q0

f(x) = sup
Q�x

mt
|f |(Q),

where the supremum is taken over all dyadic subcubes Q ∈ D(Q0) with x ∈ Q.

The following good-λ inequality is the main ingredient in the proof of the
John–Nirenberg inequality.

Lemma 3.4. Let 0 < t � 1/2n+1, K > 1 and f ∈ JNd
p,0,s(Q0) for some 0 < s �

t/2Kp, and assume that mt
|f |(Q0) � λ. Then

|EKλ(Q0)| � 2p

(K − 1)p

‖f‖p

JNd
p,0,s

λp
+

1
2Kp

|Eλ(Q0)|,

where Eλ(Q0) = {x ∈ Q0 : Md,t
Q0

f(x) > λ}.
Proof. We apply the Calderón–Zygmund decomposition (lemma 2.5) for f in Q0 at
levels λ and Kλ to obtain collections of cubes {Qi,λ}i∈N and {Qj,Kλ}j∈N such that

Eλ(Q0) =
∞⋃

i=1

Qi,λ and EKλ(Q0) =
∞⋃

j=1

Qj,Kλ.

Denote

Ji = {j ∈ N : Qj,Kλ ⊂ Qi,λ}
for every i ∈ N, and

I =

⎧⎨
⎩i ∈ N : |Qi,λ| � 2Kp

∣∣∣∣∣∣
⋃

j∈Ji

Qj,Kλ

∣∣∣∣∣∣
⎫⎬
⎭ .

Since each Qj,Kλ is contained in some Qi,λ, we get the partition

∞⋃
j=1

Qj,Kλ =
∞⋃

i=1

⋃
j∈Ji

Qj,Kλ.

By lemma 2.2(ii), (v), (vii), (iii) and lemma 2.5(ii) in this order, we obtain

mt
|f−m2nt

f (Qi,λ)|(Qj,Kλ) � mt
|f |(Qj,Kλ) − |m2nt

f (Qi,λ)| � mt
|f |(Qj,Kλ) − m2nt

|f | (Qi,λ)

� mt
|f |(Qj,Kλ) − mt

|f |(Q
′
i,λ) � Kλ − λ = (K − 1)λ,

where Q′
i,λ is the parent cube of Qi,λ. Since Qj,Kλ are pairwise disjoint, property

(x) of lemma 2.2 implies that

mt
|f−m2nt

f (Qi,λ)|

⎛
⎝⋃

j∈Ji

Qj,Kλ

⎞
⎠ � (K − 1)λ.
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By applying lemma 2.2(iii), we get

∑
j∈Ji

|Qj,Kλ| � |Qi,λ| � 1
(K − 1)pλp

|Qi,λ|
⎛
⎝mt

|f−m2nt
f (Qi,λ)|

⎛
⎝⋃

j∈Ji

Qj,Kλ

⎞
⎠
⎞
⎠

p

� 1
(K − 1)pλp

|Qi,λ|
(

m
t/2Kp

|f−m2nt
f (Qi,λ)|(Qi,λ)

)p

for i ∈ I. Hence, by summing over all indices i ∈ I, we obtain

∑
i∈I

∑
j∈Ji

|Qj,Kλ| � 1
(K − 1)pλp

∑
i∈I

|Qi,λ|
(

m
t/2Kp

|f−m2nt
f (Qi,λ)|(Qi,λ)

)p

� 2p

(K − 1)p

‖f‖p

JNd
p,0,s

λp
,

where in the last inequality we used lemma 3.2 with t � 1/2n+1 and 0 < s � t/2Kp.
On the contrary, if i /∈ I, we have

∑
j∈Ji

|Qj,Kλ| � 1
2Kp

|Qi,λ|.

Summing over all indices i /∈ I, it follows that

∑
i/∈I

∑
j∈Ji

|Qj,Kλ| � 1
2Kp

∑
i/∈I

|Qi,λ| � 1
2Kp

|Eλ(Q0)|.

By combining the cases i ∈ I and i /∈ I, we conclude that

|EKλ(Q0)| =
∞∑

i=1

∑
j∈Ji

|Qj,Kλ| � 2p

(K − 1)p

‖f‖p

JNd
p,0,s

λp
+

1
2Kp

|Eλ(Q0)|. �

We are ready to prove the John–Nirenberg inequality for JNd
p,0,s which implies

that JNd
p,0,s(Q) is contained in Lp,∞(Q) for all cubes Q ⊂ Rn.

Theorem 3.5. Let 0 < s � 1/2n+3 and s � r � 1
2 . If f ∈ JNd

p,0,s(Q0), then there
exists a constant c = c(p) such that for every λ > 0 we have

|{x ∈ Q0 : |f(x) − mr
f (Q0)| > λ}| � c

‖f‖p

JNd
p,0,s(Q0)

λp
.
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Proof. Since f ∈ JNd
p,0,s(Q0), lemma 3.2 implies that

|Q0|1/pmt
|f−mr

f (Q0)|(Q0) � 2‖f‖JNd
p,0,s

,

where t = 1/2n+1 and s � r � 1
2 . Therefore, the condition in lemma 3.4 holds for

|f − mr
f (Q0)| with the choice

λ0 =
2‖f‖JNd

p,0,s

|Q0|1/p
.

For 0 < λ � λ0, we have

|{x ∈ Q0 : |f(x) − mr
f (Q0)| > λ}| � |Q0| = 2p

‖f‖p

JNd
p,0,s

λp
0

� 2p
‖f‖p

JNd
p,0,s

λp
.

Assume then that λ > λ0. Let K = 21/p and choose N ∈ N such that

KNλ0 < λ � KN+1λ0.

We have

|{x ∈ Q0 : |f(x) − mr
f (Q0)| > λ}|

� |{x ∈ Q0 : |f(x) − mr
f (Q0)| > KNλ0}| � |EKN λ0(Q0)|,

where the last inequality follows from lemma 2.5(iii). We claim that

|EKmλ0(Q0)| � c0

‖f‖p

JNd
p,0,s

(Kmλ0)p

for every m = 0, 1, . . . , N , where c0 = 2p+1Kp(K − 1)−p. We prove the claim by
induction. First, observe that the claim holds for m = 0, since

|Eλ0(Q0)| � |Q0| = 2p
‖f‖p

JNd
p,0,s

λp
0

� c0

‖f‖p

JNd
p,0,s

λp
0

.

Assume then that the claim holds for k ∈ {0, 1, . . . , N − 1}, that is,

|EKkλ0(Q0)| � c0

‖f‖p

JNd
p,0,s

(Kkλ0)p
.

This together with lemma 3.4 for Kkλ0 implies the claim for k + 1:

|EKk+1λ0(Q0)| � 2p

(K − 1)p

‖f‖p

JNd
p,0,s

(Kkλ0)p
+

1
2Kp

|EKkλ0(Q0)|

� 2p

(K − 1)p

‖f‖p

JNd
p,0,s

(Kkλ0)p
+

c0

2Kp

‖f‖p

JNd
p,0,s

(Kkλ0)p

=
(

2pKp

(K − 1)p
+

c0

2

) ‖f‖p

JNd
p,0,s

(Kk+1λ0)p
= c0

‖f‖p

JNd
p,0,s

(Kk+1λ0)p
.
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Hence, the claim holds for k + 1.
We conclude that

|{x ∈ Q0 : |f(x) − mr
f (Q0)| > λ}|

� c0

‖f‖p

JNd
p,0,s

(KNλ0)p
= c0K

p
‖f‖p

JNd
p,0,s

(KN+1λ0)p
� c

‖f‖p

JNd
p,0,s

λp
,

with c = c0K
p = 2p+1K2p(K − 1)−p = 2p+3(21/p − 1)−p. �

As an application of the John–Nirenberg inequality (theorem 3.5), we discuss the
connection between the John–Nirenberg spaces with medians and integral averages.

Definition 3.6. Let Q0 ⊂ Rn be a cube and 1 < p < ∞. We say that f ∈ L1(Q0)
belongs to the dyadic John–Nirenberg space JNd

p (Q0) if

‖f‖p
JNd

p (Q0)
= sup

∞∑
i=1

|Qi|
(
−
∫

Qi

|f − fQi
| dx

)p

< ∞,

where the supremum is taken over countable collections {Qi}i∈N of pairwise disjoint
dyadic subcubes of Q0.

As a corollary of theorem 3.5, the median-type dyadic John–Nirenberg space coin-
cides with the dyadic John–Nirenberg space with integral averages. In particular,
it follows that all results for the dyadic John–Nirenberg spaces with integral aver-
ages also hold for the median-type dyadic John–Nirenberg spaces and vice versa.
We note that theorem 3.5 also holds for the John–Nirenberg space over all sub-
cubes instead of dyadic subcubes of Q0. Thus, the corollary below also holds for
the standard John–Nirenberg spaces.

Corollary 3.7. Let 1 < p < ∞ and 0 < s � 1/2n+3. It holds that

s‖f‖JNd
p,0,s(Q0) � ‖f‖JNd

p (Q0) � 2cp

p − 1
‖f‖JNd

p,0,s(Q0),

where c is the constant from theorem 3.5.

Proof. Let {Qi}i∈N be a collection of pairwise disjoint dyadic subcubes of Q0. The
first inequality follows in a straightforward manner from lemma 2.2(ix). For the
second inequality, we use Cavalieri’s principle together with theorem 3.5 to obtain∫

Qi

|f − ms
f (Qi)|dx

=
∫ ∞

0

|{x ∈ Qi : |f − ms
f (Qi)| > λ}|dλ

�
∫ ∞

|Qi|−1/p‖f‖
JNd

p,0,s(Qi)

cλ−p‖f‖p

JNd
p,0,s(Qi)

dλ +
∫ |Qi|−1/p‖f‖

JNd
p,0,s(Qi)

0

|Qi|dλ
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=
c

p − 1
|Qi|1−1/p‖f‖JNd

p,0,s(Qi) + |Qi|1−1/p‖f‖JNd
p,0,s(Qi)

� cp

p − 1
|Qi|1−1/p‖f‖JNd

p,0,s(Qi),

where c is the constant from theorem 3.5. This implies that
∞∑

i=1

|Qi|
(

inf
ci

−
∫

Qi

|f − ci|dx

)p

�
∞∑

i=1

|Qi|
(
−
∫

Qi

|f − ms
f (Qi)|dx

)p

�
(

cp

p − 1

)p ∞∑
i=1

‖f‖p

JNd
p,0,s(Qi)

�
(

cp

p − 1

)p

‖f‖p

JNd
p,0,s(Q0)

.

Thus, it follows that

‖f‖JNd
p (Q0) � 2cp

p − 1
‖f‖JNd

p,0,s(Q0). �

4. The dyadic maximal function on JNd
p

In this section, we discuss the behaviour of the Hardy–Littlewood maximal function
on the John–Nirenberg space with integral averages as in definition 3.6.

Definition 4.1. Let Q0 ⊂ Rn be a cube and assume that f ∈ L1(Q0). The dyadic
maximal function of f is defined by

Md
Q0

f(x) = sup−
∫

Q

|f(y)| dy,

where the supremum is taken over all dyadic subcubes Q ∈ D(Q0) with x ∈ Q.

Let f, g ∈ L1(Q0) and x ∈ Q0. Using the definition, it is easy to show that
Md

Q0
f(x) � 0,

Md
Q0

(f + g)(x) � Md
Q0

f(x) + Md
Q0

g(x),

and

Md
Q0

(af)(x) = |a|Md
Q0

f(x)

for every a ∈ R.
The Calderón–Zygmund decomposition with integral averages implies that the

dyadic maximal function satisfies the weak type estimate

|{x ∈ Q0 : Md
Q0

f(x) > λ}| � 1
λ

∫
Q0

|f(x)|dx (4.1)

for every λ > 0 and is a bounded operator on Lp(Q0) with 1 < p � ∞. Moreover,
the dyadic maximal operator is bounded on BMO(Q0); see [2]. We show that the
dyadic maximal operator is bounded on the dyadic John–Nirenberg space.
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Theorem 4.2. Let 1 < p < ∞ and assume that f ∈ JNd
p (Q0). Then there exists a

constant c = c(n, p) such that

‖Md
Q0

f‖JNd
p (Q0) � c‖f‖JNd

p (Q0).

Proof. Let {Qi}i∈N be a collection of pairwise disjoint dyadic subcubes of Q0.
Denote

Ei = {x ∈ Qi : Md
Q0

f(x) = Md
Qi

f(x)}, i ∈ N.

For x ∈ Qi \ Ei, the supremum in the definition of Md
Q0

f(x) is attained in a dyadic
cube Qx � x that intersects Q0 \ Qi. Since both Qx and Qi are dyadic subcubes of
Q0 and x ∈ Qi ∩ Qx, it follows that Qi ⊂ Qx. Since Qi ⊂ Qx for every x ∈ Qi \ Ei,
the cube Qx for which the supremum in the maximal function is attained is the
same cube for every x ∈ Qi \ Ei. Thus, for every i ∈ N, there exists a constant Mi

such that Md
Q0

f(x) = Mi for every x ∈ Qi \ Ei. We observe that

Md
Qi

f − (Md
Q0

f)Qi
� Md

Qi
f − |fQi

| = Md
Qi

f − Md
Qi

(fQi
) � Md

Qi
(f − fQi

).

This implies that

1
2

∫
Qi

|Md
Q0

f − (Md
Q0

f)Qi
|dx

=
∫

Qi

(
Md

Q0
f − (Md

Q0
f)Qi

)+
dx

=
∫

Ei

(
Md

Q0
f − (Md

Q0
f)Qi

)+
dx +

∫
Qi\Ei

(
Md

Q0
f − (Md

Q0
f)Qi

)+
dx

=
∫

Ei

(
Md

Qi
f − (Md

Q0
f)Qi

)+
dx +

∫
Qi\Ei

(
Mi − (Md

Q0
f)Qi

)+
dx

�
∫

Ei

Md
Qi

(f − fQi
) dx �

∫
Qi

Md
Qi

(f − fQi
) dx,

where in the second last inequality we also used Mi � (Md
Q0

f)Qi
, i ∈ N, which

follows from Mi � Md
Q0

f(x) for every x ∈ Qi. From the proof of the John–Nirenberg
lemma [1, pp. 11–13], [3, p. 7], we see that

|{x ∈ Qi : Md
Qi

(f − fQi
)(x) > λ}| � c

‖f‖p
JNd

p (Qi)

λp

for some constant c = c(n, p). Applying this together with Cavalieri’s principle, we
obtain∫

Qi

Md
Qi

(f − fQi
) dx

=
∫ ∞

0

|{x ∈ Qi : Md
Qi

(f − fQi
)(x) > λ}|dλ
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�
∫ ∞

|Qi|−1/p‖f‖
JNd

p (Qi)

cλ−p‖f‖p
JNd

p (Qi)
dλ +

∫ |Qi|−1/p‖f‖
JNd

p (Qi)

0

|Qi|dλ

=
c

p − 1
|Qi|1−1/p‖f‖JNd

p (Qi) + |Qi|1−1/p‖f‖JNd
p (Qi)

� cp

p − 1
|Qi|1−1/p‖f‖JNd

p (Qi).

Therefore, we can conclude that
∞∑

i=1

|Qi|
(
−
∫

Qi

|Md
Q0

f − (Md
Q0

f)Qi
|dx

)p

� 2p
∞∑

i=1

|Qi|
(
−
∫

Qi

Md
Q0

(f − fQi
) dx

)p

�
(

2cp

p − 1

)p ∞∑
i=1

‖f‖p
JNd

p (Qi)
�
(

2cp

p − 1

)p

‖f‖p
JNd

p (Q0)
.

Taking the supremum over all collections of {Qi}i∈N, we get

‖Md
Q0

f‖p
JNd

p (Q0)
�
(

2cp

p − 1

)p

‖f‖p
JNd

p (Q0)
. �

By a similar argument as in the proof of theorem 4.2, we obtain an L1 result for
the dyadic maximal function. The weak type estimate (4.1) is used instead of the
John–Nirenberg inequality in the argument.

Theorem 4.3. Let 1 < p < ∞ and assume that f ∈ L1(Q0). Then there exists a
constant c = c(p) such that

‖(Md
Q0

f)1/p‖p
JNd

p (Q0)
� c‖f‖L1(Q0).

Proof. We use the same notation as in the proof of theorem 4.2. Analogously, we
observe that

Md
Qi

f −
([

(Md
Q0

f)1/p
]

Qi

)p

� Md
Qi

f − |fQi
| = Md

Qi
f − Md

Qi
(fQi

)

� Md
Qi

(f − fQi
),

since |fQi
| � Md

Q0
f(x) for every x ∈ Qi. This implies

1
2

∫
Qi

∣∣∣∣(Md
Q0

f)1/p −
[
(Md

Q0
f)1/p

]
Qi

∣∣∣∣ dx

=
∫

Qi

(
(Md

Q0
f)1/p −

[
(Md

Q0
f)1/p

]
Qi

)+

dx

�
∫

Qi

(
Md

Q0
f −

([
(Md

Q0
f)1/p

]
Qi

)p)1/p

+

dx
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=
∫

Ei

(
Md

Q0
f −

([
(Md

Q0
f)1/p

]
Qi

)p)1/p

+

dx

+
∫

Qi\Ei

(
Md

Q0
f −

([
(Md

Q0
f)1/p

]
Qi

)p)1/p

+

dx

=
∫

Ei

(
Md

Qi
f −

([
(Md

Q0
f)1/p

]
Qi

)p)1/p

+

dx

+
∫

Qi\Ei

(
Mi −

([
(Md

Q0
f)1/p

]
Qi

)p)1/p

+

dx

�
∫

Ei

[
Md

Qi
(f − fQi

)
]1/p

dx �
∫

Qi

[
Md

Qi
(f − fQi

)
]1/p

dx,

where in the second last inequality we also used

Mi �
([

(Md
Q0

f)1/p
]

Qi

)p

, i ∈ N.

Applying Cavalieri’s principle together with the weak type estimate (4.1) for the
dyadic maximal operator, we obtain∫

Qi

[
Md

Qi
(f − fQi

)
]1/p

dx

=
1
p

∫ ∞

0

λ1/p−1|{x ∈ Qi : Md
Qi

(f − fQi
)(x) > λ}|dλ

� 1
p

∫ ∞

‖f−fQi
‖L1(Qi)

/|Qi|
λ1/p−2‖f − fQi

‖L1(Qi) dλ

+
1
p

∫ ‖f−fQi
‖L1(Qi)

/|Qi|

0

λ1/p−1|Qi|dλ

=
1

p − 1
|Qi|1−1/p‖f − fQi

‖1/p
L1(Qi)

+ |Qi|1−1/p‖f − fQi
‖1/p

L1(Qi)

=
p

p − 1
|Qi|1−1/p‖f − fQi

‖1/p
L1(Qi)

� 21/p p

p − 1
|Qi|1−1/p‖f‖1/p

L1(Qi)
.

Therefore, we can conclude that

∞∑
i=1

|Qi|
(
−
∫

Qi

∣∣∣∣(Md
Q0

f)1/p −
[
(Md

Q0
f)1/p

]
Qi

∣∣∣∣ dx

)p

� 2p
∞∑

i=1

|Qi|
(
−
∫

Qi

[
Md

Qi
(f − fQi

)
]1/p

dx

)p

� 2p+1

(
p

p − 1

)p ∞∑
i=1

‖f‖L1(Qi) � 2p+1

(
p

p − 1

)p

‖f‖L1(Q0).
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Taking the supremum over all collections of {Qi}i∈N, we obtain

‖(Md
Q0

f)1/p‖p
JNd

p (Q0)
� 2p+1

(
p

p − 1

)p

‖f‖L1(Q0). �

Corollary 4.4. Let 1 < p < ∞ and assume that f ∈ L1(Q0) \ L log+ L(Q0). Then
(Md

Q0
f)1/p ∈ JNd

p (Q0) \ Lp(Q0).

Proof. Since f ∈ L1(Q0), it follows that (Md
Q0

f)1/p ∈ JNd
p (Q0) by theorem 4.3. We

know that a function g is in L log+ L(Q0) if and only if Md
Q0

g is in L1(Q0) [26].
Therefore, we have Md

Q0
f /∈ L1(Q0), and thus (Md

Q0
f)1/p /∈ Lp(Q0). �

This provides a method to construct functions in JNd
p \ Lp. Consider a one-

dimensional example. Let I0 = (0, 1
8 ) and f : I0 → R,

f(x) =
χ(0,1/2)(x)
x(log x)2

.

It holds that f ∈ L1(I0) \ L log+ L(I0). Since f is monotone on I0, its maximal func-
tion is monotone on I0 as well. Hence, it cannot be in the standard John–Nirenberg
space JNp(I0), 1 < p < ∞, since JNp(I0) = Lp(I0) for monotone functions [6].
Thus, we have (Md

I0
f)1/p ∈ JNd

p (I0) \ JNp(I0) and (Md
I0

f)1/p ∈ JNd
p (I0) \ Lp(I0).

5. Completeness of JNd
p

The standard BMO is complete with respect to the BMO seminorm; see [24]. We
prove that the dyadic John–Nirenberg space is complete. Our proof also works for
the standard John–Nirenberg space JNp; see (1.2).

Theorem 5.1. Let Q0 ⊂ Rn be a cube. The space JNd
p (Q0) is complete with respect

to the seminorm in definition 3.6.

Proof. Assume that (fj)j∈N is a Cauchy sequence in JNd
p (Q0) and let ε > 0. There

exists jε ∈ N such that

‖fj − fk‖JNd
p (Q0) < ε whenever j, k � jε.

Consider a collection {Qi}i∈N of pairwise disjoint dyadic cubes Qi ⊂ Q0, i ∈ N. Let

gj =
∞∑

i=1

χQi
(fj − (fj)Qi

)

and observe that
∞∑

i=1

|Qi|
(
−
∫

Qi

|gj − gk|dx

)p

=
∞∑

i=1

|Qi|
(
−
∫

Qi

|fj − (fj)Qi
− (fk − (fk)Qi

)|dx

)p

=
∞∑

i=1

|Qi|
(
−
∫

Qi

|fj − fk − (fj − fk)Qi
|dx

)p

� ‖fj − fk‖p
JNd

p (Q0)
.
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Choose a subsequence (fjm
)m∈N such that

‖fjm+1 − fjm
‖JNd

p (Q0) <
1

2m

for every m ∈ N. Denote

hl =
l∑

m=1

|gjm+1 − gjm
| and h =

∞∑
m=1

|gjm+1 − gjm
|.

It then holds that liml→∞ hl = h. By using Fatou’s lemma and Minkowski’s
inequality, we obtain

( ∞∑
i=1

|Qi|
(
−
∫

Qi

|h|dx

)p
)1/p

� lim inf
l→∞

( ∞∑
i=1

|Qi|
(
−
∫

Qi

|hl|dx

)p
)1/p

� lim inf
l→∞

l∑
m=1

( ∞∑
i=1

|Qi|
(
−
∫

Qi

|gjm+1 − gjm
|dx

)p
)1/p

�
∞∑

m=1

‖fjm+1 − fjm
‖JNd

p (Q0) �
∞∑

m=1

1
2m

= 1.

Thus, h ∈ L1(Qi) for every i ∈ N and consequently h(x) < ∞ for almost every x ∈⋃∞
i=1 Qi. This implies that the series in

g = gj1 +
∞∑

m=1

(gjm+1 − gjm
)

converges absolutely for almost every x ∈ ⋃∞
i=1 Qi. Hence, we have

g = gj1 +
∞∑

m=1

(gjm+1 − gjm
) = lim

l→∞

(
gj1 +

l−1∑
m=1

(gjm+1 − gjm
)

)

= lim
l→∞

gjl
= lim

m→∞ gjm

for almost every x ∈ ⋃∞
i=1 Qi. By Fatou’s lemma, we obtain

∞∑
i=1

|Qi|
(
−
∫

Qi

|g − gj |dx

)p

� lim inf
m→∞

∞∑
i=1

|Qi|
(
−
∫

Qi

|gjm
− gj |dx

)p

� lim inf
m→∞ ‖fjm

− fj‖p
JNd

p (Q0)
< εp, (5.1)

whenever j � jε.
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Consider the collection consisting only of the cube Q0. Then as above, we have

gQ0
j = fj − (fj)Q0

and

gQ0 = gQ0
j1

+
∞∑

m=1

(gQ0
jm+1

− gQ0
jm

) = lim
m→∞ gQ0

jm

almost everywhere in Q0. Similarly, we obtain

|Q0|
(
−
∫

Q0

|gQ0 − gQ0
j |dx

)p

� lim inf
m→∞ |Q0|

(
−
∫

Q0

|gQ0
jm

− gQ0
j |dx

)p

� lim inf
m→∞ ‖fjm

− fj‖p
JNd

p (Q0)
< εp,

whenever j � jε. We see that gQ0 ∈ L1(Q0) and gQ0
j = fj − (fj)Q0 → gQ0 in L1(Q0)

as j → ∞, and thus

(fjm
)Qi

− (fjm
)Q0 = −

∫
Qi

(fjm
− (fjm

)Q0) dx → −
∫

Qi

gQ0 dx

as m → ∞. Hence, for almost every x ∈ Qi, it holds that

gQ0 − g = lim
m→∞ (fjm

− (fjm
)Q0 − (fjm

− (fjm
)Qi

))

= lim
m→∞ ((fjm

)Qi
− (fjm

)Q0) = (gQ0)Qi
.

This together with (5.1) implies

∞∑
i=1

|Qi|
(
−
∫

Qi

|gQ0 − fj − (gQ0 − fj)Qi
|dx

)p

=
∞∑

i=1

|Qi|
(
−
∫

Qi

|gQ0 − (gQ0)Qi
− gj |dx

)p

=
∞∑

i=1

|Qi|
(
−
∫

Qi

|g − gj |dx

)p

< εp,

whenever j � jε. Since this holds for any collection {Qi}i∈N, we can take the
supremum over the collections to obtain

‖gQ0 − fj‖JNd
p (Q0) < ε,

whenever j � jε. This concludes that gQ0 = (gQ0 − fj) + fj ∈ JNd
p (Q0) and fj

converges to gQ0 in JNd
p (Q0) as j → ∞. �
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