We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a quasi-hereditary algebra , we present conditions which guarantee that the algebra obtained by grading by its radical filtration is Koszul and at the same time inherits the quasi-hereditary property and other good Lie-theoretic properties that might possess. The method involves working with a pair consisting of a quasi-hereditary algebra and a (positively) graded subalgebra . The algebra arises as a quotient of by a defining ideal of . Along the way, we also show that the standard (Weyl) modules for have a structure as graded modules for . These results are applied to obtain new information about the finite dimensional algebras (e.g., the -Schur algebras) which arise as quotients of quantum enveloping algebras. Further applications, perhaps the most penetrating, yield results for the finite dimensional algebras associated with semisimple algebraic groups in positive characteristic . These results require, at least at present, considerable restrictions on the size of .
Nous étudions la structure du centralisateur d'un élément unipotent régulier d'un sous-groupe de Levi d'un groupe réductif, ainsi que la structure du groupe des composantes de ce centralisateur en relation avec la notion de système local cuspidal définie par Lusztig. Nous déterminons son radical unipotent, montrons l'existence d'un complément de Levi et étudions la structure de son groupe de Weyl. Comme application, nous démontrons des résultats qui étaient annoncés dans un précédent article de l'auteur sur les éléments unipotents réguliers.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.