We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Motivated by the Erdős–Szekeres convex polytope conjecture in $\mathbb{R}^{d}$, we initiate the study of the following induced Ramsey problem for hypergraphs. Given integers $n>k\geqslant 5$, what is the minimum integer $g_{k}(n)$ such that any$k$-uniform hypergraph on $g_{k}(n)$ vertices with the property that any set of $k+1$ vertices induces 0, 2, or 4 edges, contains an independent set of size $n$. Our main result shows that $g_{k}(n)>2^{cn^{k-4}}$, where $c=c(k)$.
In 2006 Brown asked the following question in the spirit of Ramsey theory: given a non-periodic infinite word $x=x_{1}x_{2}x_{3}\ldots$ with values in a set $\mathbb{A}$, does there exist a finite colouring $\unicode[STIX]{x1D711}:\mathbb{A}^{+}\rightarrow C$ relative to which $x$ does not admit a $\unicode[STIX]{x1D711}$-monochromatic factorization, i.e. a factorization of the form $x=u_{1}u_{2}u_{3}\ldots$ with $\unicode[STIX]{x1D711}(u_{i})=\unicode[STIX]{x1D711}(u_{\!j})$ for all $i,j\geqslant 1$? Various partial results in support of an affirmative answer to this question have appeared in the literature in recent years. In particular it is known that the question admits an affirmative answer for all non-uniformly recurrent words and for various classes of uniformly recurrent words including Sturmian words and fixed points of strongly recognizable primitive substitutions. In this paper we give a complete and optimal affirmative answer to this question by showing that if $x=x_{1}x_{2}x_{3}\ldots$ is an infinite non-periodic word with values in a set $\mathbb{A}$, then there exists a $2$-colouring $\unicode[STIX]{x1D711}:\mathbb{A}^{+}\rightarrow \{0,1\}$ such that for any factorization $x=u_{1}u_{2}u_{3}\ldots$ we have $\unicode[STIX]{x1D711}(u_{i})\neq \unicode[STIX]{x1D711}(u_{\!j})$ for some $i\neq j$.
We provide primitive recursive bounds for the finite version of Gowers’ $c_{0}$ theorem for both the positive and the general case. We also provide multidimensional versions of these results.
We generalise an argument of Leader, Russell, and Walters to show that almost all sets of $d+ 2$ points on the $(d- 1)$-sphere ${S}^{d- 1} $ are not contained in a transitive set in some ${\mathbf{R} }^{n} $.
Our main aim in this paper is to show that there is a partition of the reals into finitely many classes with ‘many’ forbidden distances, in the following sense: for each positive real x, there is a natural number n such that no two points in the same class are at distance $x/n$. In fact, more generally, given any infinite set $\{ c_n:n<\omega\}$ of positive rationals, there is a partition of the reals into three classes such that for each positive real x, there is some n such that no two points in the same class are at distance $c_nx$. This result is motivated by some questions in partition regularity.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.