The three-dimensional distribution of galaxies in the redshift surveys differ from the true one since the distance to each galaxy cannot be determined by its redshift z only; for z ≪ 1 the peculiar velocity of galaxies, typically ∼ (100–1000)km/sec, contaminates the true recession velocity of the Hubble flow, while the true distance for objects at z ≳ 1 sensitively depends on the (unknown and thus assumed) cosmological parameters. This hampers the effort to understand the true distribution of large-scale structure of the universe. Nevertheless such redshift-space distortion effects are quite useful since through the detailed theoretical modeling, one can derive the peculiar velocity dispersions of galaxies as a function of separation, and also can infer the cosmological density parameter Ω0, the dimensionless cosmological constant λ0, and the spatial biasing factor b of galaxies and/or quasars, for instance. In this talk, I discuss the importance of such redshift distortion induced by the geometry of the universe, which summarizes the recent results of my collaborative work in this topic (Matsubara & Suto 1996; Nakamura, Matsubara, & Suto 1998; Magira, Matsubara, Jing, & Suto 1998).