Root biomass, root lengths, and mycorrhizal associations were compared in a series of primary and Acacia-dominated secondary rainforest stands on nutrient-poor, red podzolic soils developed from low grade Palaeozoic metasediments. Five soil cores to 200 mm depth were collected at random locations from each of 20 sites. Ten of these sites were in 20–25 m high closed secondary forest (30–40 y old) dominated by Acacia aulacocarpa and ten sites were located in primary, selectively-logged, rainforest (28–32 m tall). Arbuscular mycorrhizas were the only form of association found in the primary forest sites. Ectomycorrhizas dominated the secondary forest sites although arbuscular mycorrhizas were also present. The primary forest sites had significantly higher root biomass (34.4 ± 17.8 t ha-1) and root length (33,400 ± 3,200 km ha-1) than the secondary forests (11.6 ± 4.6 t ha-1 and 25,200 ± 4,800 km ha-1 respectively), and this was interpreted as a reflection of the greater allocation of biomass to roots necessary to support the greater above ground biomass. The specific root length in the secondary forest (340 ± 119 cm g-1) was twice that of the primary forest (154 ± 65 cm g-1) indicating that the trees in the secondary forests achieved a degree of soil exploration which was comparable to that in the primary forest with less than half the biomass allocation to roots. The dominance of ectomycorrhizas in the secondary forest was associated with the prevalence of Acacia aulacocarpa, and the results cannot be extended to other secondary forests in the region. The implications that the dominant ectomycorrhizal associations have for the patterns of successional development and the patterns of species colonization in these Acaria-dominated secondary forests are discussed.