In this joint theoretical, numerical and experimental study, we investigate the phenomenon of forced generation of nonlinear waves by disturbances moving steadily with a transcritical velocity through a layer of shallow water. The plane motion considered here is modelled by the generalized Boussinesq equations and the forced Korteweg-de Vries (fKdV) equation, both of which admit two types of forcing agencies in the form of an external surface pressure and a bottom topography. Numerical results are obtained using both theoretical models for the two types of forcings. These results illustrate that within a transcritical speed range, a succession of solitary waves are generated, periodically and indefinitely, to form a procession advancing upstream of the disturbance, while a train of weakly nonlinear and weakly dispersive waves develops downstream of an ever elongating stretch of a uniformly depressed water surface immediately behind the disturbance. This is a beautiful example showing that the response of a dynamic system to steady forcing need not asymptotically tend to a steady state, but can be conspicuously periodic, after an impulsive start, when the system is being forced at resonance.
A series of laboratory experiments was conducted with a cambered bottom topography impulsively started from rest to a constant transcritical velocity U, the corresponding depth Froude number F = U/(gh0)½ (g being the gravitational constant and h0 the original uniform water depth) being nearly the critical value of unity. For the two types of forcing, the generalized Boussinesq model indicates that the surface pressure can be more effective in generating the precursor solitary waves than the submerged topography of the same normalized spatial distribution. However, according to the fKdV model, these two types of forcing are entirely equivalent. Besides these and some other rather refined differences, a broad agreement is found between theory and experiment, both in respect of the amplitudes and phases of the waves generated, when the speed is nearly critical (0.9 < F < 1.1) and when the forcing is sufficiently weak (the topography-height to water-depth ratio less than 0.15) to avoid breaking. Experimentally, wave breaking was observed to occur in the precursor solitary waves at low supercritical speeds (about 1.1 < F < 1.2) and in the first few trailing waves at high subcritical speeds (about 0.8 < F < 0.9), when sufficiently forced. For still lower subcritical speeds, the trailing waves behaved more like sinusoidal waves as found in the classical case and the forward-running solitary waves, while still experimentally discernible and numerically predicted for 0.6 > F > 0.2, finally disappear at F ≈ 0.2. In the other direction, as the Froude number is increased beyond F ≈ 1.2, the precursor soliton phenomenon was found also to evanesce as no finite-amplitude solitary waves can outrun, nor can any two-dimensional waves continue to follow, the rapidly moving disturbance. In this supercritical range and for asymptotically large times, all the effects remain only local to the disturbance. Thus, the criterion of the fascinating phenomenon of the generation of precursor solitons is ascertained.