Experimental results obtained during rapid shearing of several dry, coarse, granular materials in an annular shear cell are described. The main purpose of the tests was to obtain information that could be used to guide the theoretical development of constitutive equations suitable for the rapid flow of cohesionless bulk solids at low stress levels. The shear-cell apparatus consists of two concentric disk assemblies mounted on a fixed shaft. Granular material was contained in an annular trough in the bottom disk and capped by a lipped annular ring on the top disk. The bottom disk can be rotated at specified rates, while the top disk is loaded vertically and is restrained from rotating by a torque arm connected to a force transducer. The apparatus was thus designed to determine the shear and normal stresses as functions of solids volume fraction and shear rate.
Tests were performed with spherical glass and polystyrene beads of nearly uniform diameters, spherical polystyrene beads having a bimodal size distribution and with angular particles of crushed walnut shells. The particles ranged from about ½ to 2 mm in size. At the lower concentrations and high shear rates the stresses are generated primarily by collisional transfer of momentum and energy. Under these conditions, both normal and shear stresses were found to be proportional to the particle density, and the squares of the shear rate and particle diameter. At higher concentrations and lower shear rates, dry friction between particles becomes increasingly important, and the stresses are proportional to the shear rate raised to a power less than two. All tests showed strong increases in stresses with increases in solids concentrations. The ratio of shear to normal stresses showed only a weak dependence upon shear rate, but it increased with decreasing concentration. At the very highest concentrations with narrow shear gaps, finite-particle-size effects became dominant and differences in stresses of as much as an order of magnitude were observed for the same shear rate and solids concentration.