Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T01:11:04.701Z Has data issue: false hasContentIssue false

Music's putative adaptive function hinges on a combination of distinct mechanisms

Published online by Cambridge University Press:  30 September 2021

Bruno Gingras*
Affiliation:
Department of Psychology, University of Innsbruck, 52f Innrain, InnsbruckA-6020, Austria. [email protected]

Abstract

Music's efficacy as a credible signal and/or as a tool for social bonding piggybacks on a diverse set of biological and cognitive processes, implying different proximate mechanisms. It is likely this multiplicity of mechanisms that explains why it is so difficult to account for music's putative biological role(s), as well as its possible origins, by proposing a single adaptive function.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gingras, B., Marin, M. M., & Fitch, W. T. (2014). Beyond intensity: Spectral features effectively predict music-induced subjective arousal. Quarterly Journal of Experimental Psychology, 67(7), 14281446.CrossRefGoogle ScholarPubMed
Huron, D. (2006). Sweet anticipation: Music and the psychology of expectation. MIT Press.CrossRefGoogle Scholar
Juslin, P. N. (2013). From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions. Physics of Life Reviews, 10(3), 235266.CrossRefGoogle ScholarPubMed
Juslin, P. N., Barradas, G., & Eerola, T. (2015). From sound to significance: Exploring the mechanisms underlying emotional reactions to music. The American Journal of Psychology, 128(3), 281304.CrossRefGoogle Scholar
Ma, W., & Thompson, W. F. (2015). Human emotions track changes in the acoustic environment. Proceedings of the National Academy of Sciences, 112(47), 1456314568.CrossRefGoogle ScholarPubMed
Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T., & Barabási, A. L. (2000). The sound of many hands clapping. Nature, 403(6772), 849850.CrossRefGoogle ScholarPubMed
O'Keeffe, K. P., Hong, H., & Strogatz, S. H. (2017). Oscillators that sync and swarm. Nature Communications, 8(1), 113.Google ScholarPubMed
Páez, D., Rimé, B., Basabe, N., Wlodarczyk, A., & Zumeta, L. (2015). Psychosocial effects of perceived emotional synchrony in collective gatherings. Journal of Personality and Social Psychology, 108(5), 711729.CrossRefGoogle ScholarPubMed
Rennung, M., & Göritz, A. S. (2016). Prosocial consequences of interpersonal synchrony: A meta- analysis. Zeitschrift für Psychologie, 224(3), 168189.CrossRefGoogle ScholarPubMed
Zivotofsky, A. Z., Gruendlinger, L., & Hausdorff, J. M. (2012). Modality-specific communication enabling gait synchronization during over-ground side-by-side walking. Human Movement Science, 31(5), 12681285.CrossRefGoogle ScholarPubMed