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Brian Skynns 's Dynamics of Rational Deliberation (1990) answers questions I 
have puzzled over for thirty years, and suggests fresh approaches to other questions. 
Here 1 want to explore an answer, in Skynns's dynamic terms, to an old question on 
my agenda concerning Humean (or Kantian, or pragmatic) probabilistic accounts of 
causal talk: 

What features of your judgmental probabilities show that you view truth of one 
proposition as promoting truth of another, rather than as being promoted by 
truth of that other, or as being promoted by truth of some third proposition 
which also promotes truth of the other? 

lnnocence of causal ideas was meant to be a virtue of The Logic of Decision 
(1965), opening the possibility of a non-circular analysis of talk about causality; but 
in the wake of Robert Nozick's "Newcomb's problem and two principles of choice" 
(1969) that became problematical, for it seemed to limit the theory to "normal" cases, 
where any influence between acts and "states" (consequences, relevant conditions) 
runs from acts to states. Brian Skynns (1980) was one of the earliest architects of a 
decision theory giving causal factors their own explicit place. The second edition of 
my book (1983, 1990) offered a way ("ratificationism") of dealing with some 
Newcomb problems, but not all. The present proposal grows out of my later attempt 
(1988) to make good the deficiency. 

Skynns's (1980, pp. 128-139) causal decision theory replaces the usual act-state ma­
trices by 3-dimensional act-state-cause matrices whose components are the partitions 
you envisage of available acts, states, and causal hypotheses. Tue result is like a deck of 
cards, one for each causal hypothesis K, each card printed with an act-state matrix of 
conditional expectations of uti.lity (sc„ "desirabilities") E(ulS&K&A), and conditional 
probabilities P(SIK&A). To the card corresponding to any one K, Skynns applies The 
Logic of Decision to get figures of merit for all acts A, i.e„ your conditional expectation 
of utility given A on the assumption that K is the true causal hypothesis. These are the 
farniliar weighted averages E(ulK&A) = I.sE(ulS&K&A)P(SIK&A) of desirabilities, 
where the weights are conditional probabilities. Your overall figure of merit for act Ais 
a weighted average of those K-relative figures, the weights being your unconditional 
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probabilities for the K's: U(A) = LKP(K)E(ulK&A), i.e., writing f(K) = E(ulK&A), 
U(A) = E(f). 

Skynns's theory delivers what I take tobe correct advice about how to behave in 
("Newcomb") problems where you see your acts as mere signs of conditions that you 
would promote or prevent if you could. lt is a static theory, in which one reasons in 
terms of a single probability function P throughout deliberation. Here I present a dy­
namic adaptation of my (1965) theory that delivers the goods in Newcomb problems 
(as weil as normal decision problems). lt depends on a certain interpretation of, or sub­
stitute for, causal talk. Tue underlying thought is that your directions of causal irnputa­
tion correspond to no momentary features of your developing judgmental probability 
function P, but to features of your overall pro gram for updating P. lt is programmed 
constancy of conditional probability as unconditional probability of the condition 
changes that shows the program to be treating the condition as a source and the other 
propositions as sinks in the updating process. 1n normal decision problems acts A are 
sources. In Newcomb problems the sources are causal hypotheses K. 1n normal deci­
sion problems P(SIA) remains constant as your probability distribution over the A's 
changes, thereby driving the updating process. 1n Newcomb problems it is changes in 
your probability distribution over the K's that drives the process, in which the A's are 
sinks; changes in your views about what act you are likely to perform are driven by 
changes in your judgments about the causal hypotheses. (But these latter changes will 
depend epistemically on changes in your probabilistic judgment about what act you 
will perform.) Thus, in a prisoners's dilemma for "clones" (i.e., prisoners who think 
their values, beliefs, and thought processes are much alike), the prisoners may see 
themselves as having a common tendency toward cooperation or defection. Then Ms. 
Row's probability distribution over values of K may be expected to change with her 
probability for cooperating, seen as evidence bearing on the K's; but conditionally on 
any particular value of K, her probabilities P(statelact&K) = P(statelK) for her states (= 
Column's acts) are fixed as P develops, driven by changes in P(K). 

s -.s s -.s 
A 3rd best best A p 1-p 

-A worst 2nd best -A 1-q q 
Table l (a) Utilities (b) Conditional probabilities 

E(ulA) = p·(3rd best)+(l-p)·(best) 
E(ul-A) = (l-q){worst)-+<i·(2nd best) 
(c) Conditional expectations of utility 

Table 1 is a partial representation in my 1965 framework of the general 2-by-2 
Newcomb problem, abbreviating p = P(SIA) and q = P(-Sl-A.). (A füll representation 
would identify the causal hypotheses K.) If preference goes by conditional expecta­
tion of utility ("desirability"), then by Table 1 (c) the condition under which you prefer 
-A. to A is that 

p{best-third) + q·(second-worst) > best-worst 

Where the difference between bestand third best equals the difference between sec­
ond bestand worst (as in the original Newcomb problem), the condition under which 
you prefer act 0 is 

p + q > (best-worst)/(second-worst) 

1n the original Newcomb problem best, second, third, worst are 1001, 1000, 1, 0, re­
spectively (i.e., utilities of receiving those numbers of thousands of dollars), so that 
you prefer -A. iff p+q > 1.001. Then if you see the acts as having even a very slight 
predictive significance for the corresponding states, e.g., p = q = .501, you will choose 
act -A.. Yet, the problem-statement strongly suggests that Ais preferable to -A.: 
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Someone with a fair record of accuracy in such matters has fallibly predicted your 
choice, and irreversibly deposited a million dollars in your bank account if and only if 
the prediction was that you would reject an additional thousand. There is no time­
travel going on; just shrewd reading of character. As the question of the million in 
your bank account is already settled when you decide to accept (A) or reject (-A) the 
extra thousand, it seems merely supersitious to refuse the $1000 sweetener. 

This version of the problem, due to Howard Sobel, is equivalent to Nozick's, in 
which the thousand and the million are in two boxes, and accepting or rejecting the 
thousand is a matter of taking both boxes or only one. 

There are some - e.g., Bar-Hillel and Maragalit (1972) - who think that taking 
just one box, declining the thousand, -A, is the reasonable move; and statistics would 
seem to bear them out. "If it is irrational to decline the extra thousand, 1 prefer the 
million to rational poverty." And it is sometimes held that The Logic of Decision re­
solves the prisoners's dilemma by recognizing the cooperative solution (-A) as ratio­
nal, since there is some reason to think each prisoner's decision a good enough pre­
dictor of the other's, e.g., when the utilities best= 0, second = -1, third = -9, worst = 
-10 are negatives of times served, so that conditional expectation of utility relative to 
act -A is maximum as lang as p + q > 10/9 = 1.111... , as when p = q = .51. 

In normal decision problems you see your choice of an act as the source of 
changes in your probability distribution P, with alternative acts promoting or inhibit­
ing or independent of various states. The case where you treat some third factor K as 
representing tendencies or tropisms toward particular acts and states is the defining 
characteristic of Newcomb problems. These are problems in which some tropism is 
seen as the source, a causal factor K driving both acts and states. This means: 

In Newcomb problems, changes in your probability distribution over values of the 
tropism, X, drive the updating process, and probabilistic dependencies such as P(SIA) 
< P(Sl-A) have no causal significance, but are rooted in differences in the evidentiary 
significance of the acts for values X=x of the tropism, as when -A is better evidence 
than A for high x. 

Thus, in the original Newcomb problem, when you and the predictor are respond­
ing to a common inclining cause of the act and the state, and ±S means that ±A is pre­
dicted, it will be the conditional probabilities P(A&SIX=x) that are programmed as 
constant while P(X=x) varies. lt is the mark of ordinary decision problems, where acts 
are seen as driving states, that P(SIA) is meant to remain constant as P(A) varies. 

Now in Newcomb problems you see the the tropism as driving both act and state. 
In particular, your probability for the state conditionally on any particular value of the 
tropism, and conditionally on any particular pair of values for the tropism and the act, 
might simply be the value ofthe tropism: 

P(SIA&X=x) = P(SIX=x) = x 

(In such cases you are treating x as the objective probability of S - the objective 
chance, or propensity that S is true.) Then your unconditional probability for S will be 
a weighted average of the various values x this conditional probability can assume, 
between 0 and 1, weighted with your unconditional probabilities for those values. As 
we are dealing with a continuous distribution of judgmental probability over the unit 
interval (0, 1 ], it is natural to think of the matter in terms of a probability density func­
tion f assigning non-negative values f(x) to points t in the unit interval in such a way 
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that there is unit mass under the f curve over [0,1] . The value x = P(S) defines the po­
sition of a fulcrum on which a uniform mass distribution under the f curve would just 
balance, i.e., P(S) = J01xf(x)dx. 

Before proceeding, !et us examine a particular model of the dynamics of 
Newcomb problems, i.e., a pair of families fi, gi, of probability density functions over 
the unit interval, representing alternative courses of evolution of your judgment con­
cerning the values of the tropism. As t increases from 0, the fi family moves from a 
uniform distribution f0(x) = 1 for all x in [0,1] through distributions concentrating 
probability more and more toward the right-hand end of the interval, i.e., except for 
normalization, f1 (x) = x, f2(x) = x2, f3(x) = x3, . ... After normalization (so that the 
area under the f1 curve from x=O to x=l becomes 1), these become f1(x) = (t+ l)xi. 
The f1 family represents one possible route from a judgmental state of total ignorance 
about where K lies in the unit interval through states of increasing conviction that the 
value is far to the right in that interval. Similarly, the gi family represents a route from 
the same initial state of ignorance, &J(X) = f0(x) = 1, through distributions concentrat­
ing probability further and further to the left of the unit interval, i.e., except for nor­
malization, densities &J(x) = 1-x, g2(x) = (l-x)2, g3(x) = (l-x)3, . .. . In general, nor­
malized, these are gi(x) = (t+l)(l-x)t. 

Now in this problem your judgments about what act you will perform, and what 
the state of nature will be, are driven by your judgments about the tropism, as follows, 
where Pi and Q1 are your probability functions as determined by f1 and gi, respective­
ly, and Ei and Fi are the corresponding expectation functions. The computations Ei(X) 
= J01xfi(x)dx, Fi(l-X)2 = J01(1-x)2gi(x)dx, etc., yield the following results. 

Pi(A) = Pi(S) = Ei(X) = Q1(--A) = Qi(-S) = F1(l-X) = (t+ l)/(t+2) 
Pi(A&S) = Ei(X2) = Q1(-S&--A) = Fi(l-X) = (t+l)/(t+3) 

P1(SIA) = Qi(-Sl-A)) = (t+2)/(t+3) 
P1(-Sl--A) = Qi(SIA) = 2/(t+3) 

Then as Pi(A) approaches 1, driven by movement of the densities _!J, the conditional 
probability matrix in Table l(b) goes through the forms shown in ·rable 2(a), while as 
Q1(A) approaches 0, driven by densities g1, the matrix goes through the forms shown 
in Table 2(b). Note that in the two cases the odds on S conditionally on A and on --A 
are as in Tabes 3(a) and (b). 

S -,S S -,S 
A (t+2)/(t+3) 1/(t+3) A 2/(t+3) (t+l)/(t+3) 

--A (t+ 1)/(t+3) 2/(t+ 3) --A l/(t+3) (t+2)/(t+3) 
Table 2 (a) P(±Sl±A) (b) Q(±Sl±A) 

S:-S S:-S S -,S 
A t+2:1 A 2:t+l A 3rd best best 

--A t+l :2 --A l:t+2 
Table 3 (a) P(Sl±A):P(-Sl±A) (b) Q(Sl±A):Q(-Sl±A) 

--A worst 2nd best 
(c) Utilities 

Evidently, as t increases without bound Pi(Sl±A) approaches 1 and Qi(Sl±A) ap­
proaches 0. Then as you become nearly certain about your act, i.e., as P1(A) approach­
es 1 (left) or Qi(--A) approaches 1 (right), you become nearly certain about the corre­
sponding state, i.e., in the original Newcomb problem, that that very act will have 
been predicted, or in the similar prisoners' dilemrna that the other prisoner is perform­
ing that very act. The utility matrix (c) is unchanging and identical throughout the ap­
proaches (a, b) to the two decisions . On the way to a decision to make A true (a), you 
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see yourself approaching the next-to-worst outcorne - but you see the alternative as 
even worse. On the way to a decision to rnake A false (b) you see yourself as near the 
next-to-best outcorne - but you see the alternative as even better! Then a decision to 
rnake A true is ratifiable in the sense that as you approach it, -A. continues to look 
worse than A; but the rnore prornising decision to rnake A false is unratifiable, for as 
you becorne surer that you will opt for -A., the payoff frorn that option looks worse 
than the payoff frorn the other. 

Then if preference goes by conditional expectation of utility, A is available to you 
as a preferential choice: as you opt for it, that option looks preferable to the alterna­
tive. But -A. would not be a preferential choice; you rnay opt for it, but in doing so 
you will be choosing the then less-preferred option. On a dynamic reading, The 
Logic of Decision delivers the 2-box solution to Newcornb's problern. 

That's the case, anyway, on the particular rnodel we have been considering, of 
your approaches to the two possible decisions, i.e„ a plausible rnodel for the problern 
as stated, far from being the only plausible model of it, but perhaps representative of 
all such models in delivering the 2-box solution. But what is sorely needed, here, is a 
cogent general characterization of the class of plausible models. 

In variants of the problem, 1-box solutions are plausible (so 1 think) and are deliv­
ered by the present machinery. A prime example is the case where the predictor is 
thought to be 100% reliable. Then all your probability will be concentrated upon two 
tropisms, Ho and H 1, where Hi = you will take i+ 1 boxes and the predictor expects 
you do so. Here P(A&SIHj) = i, andin Table l(b), p=q=l and the other two entries are 
0, so that you do not see this as a decision under uncertainty; rather, you see -A. (take 
1) as surely better than A (take 2), and (according to the present rnachinery) are weil 
advised to act accordingly, for as E(ul-A.) > E(ulA) all the way through your approach 
to either choice, that machinery identifies -A. is your only preferential choice. 

In Newcomb problems theoretical considerations about preexisting tropisms drive 
the agent's practical judgment about what to do, and it is precisely this that puts them 
out of focus as decision problems - the defining characteristic being feit as a denial 
of normal free agency. The quest for believable Newcomb problems is the quest for 
believable hypotheses of the right sort about tropisms. Philosopers are often willing to 
accept schematized hypotheses, granting that talk about objective chance can be 
cashed out so as to satisfy the principle that one 's judgmental probability for any 
proposition A is one's expectation of a random variable X(w) = chw(A) - read, "the 
objective chance in world w that A is true" - having the characteristic that for each 
w, the function chw(A) is a probability measure in the technical sense. Thus the condi­
tion is P(A) = E(chw(A)), so that in case chw(A) has only a countable set of distinct 
values x, each having ajudgmental probability, i.e., P{w:chw(A)=x}, the condition is 

P(A) = Lx x·P{w:chw(A)=x} 

or, what comes to the same thing, 

P(AI { w:chw(A)=x}) = x 

This (especially in the second form) is what David Lewis (1986, p. 87) calls the 
(shudder) "principal principle" connecting the two concepts of judgmental probability 
(P) and objective chance (eh). Others, for the same reason, call it the principle of "di­
rect inference" from objective chance to judgmental probability. 
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But I prefer to replace this principle by a schema (or treat this principle as a 
schema) indicating the general conditions under which we treat natural random vari­
ables as sources of causal influence, conditions in which it is changes in judgmental 
probability distributions over the possible values of such variables that drive judg­
mental probability updating programs. I illustrate it here with a particular natural ran­
dom variable of a sort often used in that way in textbook examples, i.e., the propor­
tion p(w) of green balls in an urn, where A is the proposition that the next ball drawn 
will be green. The schema is asserted for all proportions, x. 

P(AI{ w:p(w) = x}) = x 

Now this is no principle, if a principle is a requirement reasonably imposed in every 
case. Thus it would not be reasonable to apply this schema in case the drawing is made 
with eyes open, in good light, with view to drawing a green ball. Rather, this is a con­
dition defining circumstances under which the updating process is driven by one's 
judgmental probability distribution over the possible proportions of green balls in the 
urn. The Statement of these circumstances, which hold in some cases but not in all, ex­
plicitly refers to your judgmental probabilities P as weil as to the objective conditions, 
p(w) = x. The schema does not prescribe updating schemes, but classifies them; given 
an updating scheme, the schema identifies the random variable that drives it. 

In general, p is any random variable satisfying the schema for all of its values x. 
For the particular random variable in our example, p = proportion of green balls in the 
urn, the value ofp was used as a conditional probability, P(Al{w:p(w) = x}) = x, but 
that is not required in general. Thus, suppose your judgmental probability that a 
penny spun on edge will land head up is a function h(o/r) of the ratio of the diameter 
of its obverse to that of its reverse - the penny being a section of a cone. In such a 
case, p(w) might be o(w)/r(w), i.e., not a probability, and the schema would be 

P(Al{w:p(w)=x}) = h(x) 

Knowing h, one could rewrite this in a form in which the value of the random variable 
is your judgmental probability itself: 

P(Al{w:h(p(w))=y}) = y 

But identification of such a function h is more likely to be the desired outcome of an 
incomplete project, so that the schema is a hopeful characterization of some future 
judgmental probability function. The project might involve extensive experimentation 
with coins having various values of p, with actual relative frequencies of heads for 
particular values x of p serving to identify the values y = h(x). 

1 think it important to mark the distinction between p as an actual accomplishment 
(Shafer 1981) and as a project. That loose distinction sits on top of a continuum -a 
multi-dimensional one at that - with extremes exemplified at the "accomplishment" 
end by textbook examples like the one in which p is the proportion of green balls in 
an urn, and at the project end by the EPR attitude toward quantum mechanics 
(Einstein&al. 1935) as demanding completion by a still unspecified naturalistic 
grounding for p. There is a useful comparison with the semantics of counterfactual 
conditionals - say, Stalnaker's (1968), which uses a selection function, f, where f(A, 
w) is w itselfif Ais true in w, and otherwise is the world most like w in which Ais 
true. My view of f - like Stalnaker's, I think - is like my view of eh, i.e., a tribe of 
context-dependent notions. Similarity of worlds is what we make it. Thus, with w as 
the real world, if 1 do not now drop this glass, w' = f("I drop this glass now", w) is 
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undefined in the absence of a specification of the analog of an updating pro gram for P 
- a pro gram allowing detennination in principle of what truths are to carry over from 
w to w', and of the truth values in w' of falsehoods in w. The truth value in w of "This 
glass would break now if I dropped it now" is the truth value in w' of "This glass 
breaks now." Certainly; but that does not yet detennine the conditional's truth value in 
w - even "in principle." To identify a particular selection function is to identify the 
features of each w that are to remain fixed when we go to f(w, A). The cases where 
counterfactual talk is unproblematical are those in which w is the actual world and 
tacit understandings identify the constant features of f relative to a tacitly understood 
class of A's. What we must guard against is the natural but bogus thought that since 
such understandings are familiar and plentiful, "f' already makes sense for arbitrary 
w's and A's, before we do the work of specifying f(w, A) for all wand A, i.e., work 
far beyond our power to accomplish - except in special, hothouse cases. 

But of course the dynamic account of deliberation presented here is no less 
schematic than Stalnaker's account of counterfactual conditionals. Instead of prescrib­
ing appropriate dynamics for problems as presented, it requires deliberating agents to 
map the approaches to their various possible acts via updating schemes consonant 
with their understanding of those problems. What's provided is only a framework, to 
be filled in by the deliberating agent or whoever undertakes to analyze the agent's 
predicament. But the filling material is subjectivistic Bayesian stuff - not counter­
factual conditionals, or objective chances, but programs for judgmental probabilities 
evolving over time, albeit programs for which the user's manuals might helpfully use 
the counterfactual idiom and speak of causal influence and objective chance, for it is 
in the context of such definite programs that those idioms are of use. 

1 conclude with assorted references to the literature. 

As far as I know, it was Frank Amtzenius (1990) who first published the 
suggestion that constancy of conditional probability under varying probability of the 
condition is the missing ingredient in recent attempts to define probabilistic causality. 
He has called my attention to Huw Price's (1993) arguments against that idea, in this 
volume. (Note that Amtzenius's paper in this volume does not address the constancy 
question.) I am sympathetic to Price's (and, as he points out, Frank Ramsey's) view of 
causal asymmetry as rooted in our perspective as agents . 1 was delighted to find 
Amtzenius floating and defending in print the suggestion that invariance of condition­
al probabilities completes probabilistic analyses of causality; 1 had thought it might, 
but didn't feel weil enough acquainted with the literature to stick my neck out. But 
whether or not it yields an analysis of homely notions of causality, 1 see invariance as 
the active ingredient in irnpingements of the notion of causal efficacy on decision the­
ory, and I expect that Amtzenius's (1990) arguments will stand up as demonstrating a 
similar role for invariance pretty generally. 

Like de Finetti (1931, etc.) 1 am a subjectivist. Thus, following Steven Leeds 
(1984) and Brian Skyrrns (1984) 1 see the probabilities in quantum mechanics as sub­
jective; I see the theory as telling you to accept certain constraints on your judgmental 
probability distribution, e.g., füting certain conditional probabilities. In effect, the the­
ory's sentences about probability are in the imperative mood; using the theory re­
quires following those instructions. Bas van Fraassen (1989, pp. 197-WS) pushes this 
point ofview further, using Hairn Gaifman's (1988) idiom, in which the theory is said 
to offer expert probabilistic opinion within its domain. 

The present analysis provides a dynamic rationale for the scheme of probability 
kinematics floated in Jeffrey ( 1965 chapter 11; see also 1992 chapter 7). In the design 
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of mechanisms, kinematics is the discipline in which rigid rods and distortionless 
wheels, gears, etc. are thought of as faithful, prompt communicators of motion. The 
contrasting dynamic analysis takes forces into account, so that, e.g., elasticity may in­
troduce distortion, delay, and vibration; but kinematical analyses often suffice, or, 
anyway, suggest important dynarnical considerations. That is the metaphor behind the 
term "probability kinematics," and behind use of the term "rigidity" for constancy of 
conditional probabilities. 
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