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1. Introduction 

1 would like to begin by addressing two pressing questions that may be raised re
garding chaos theory: Is it actually about "chaos" at all? And is it actually a "theory?" 
Tue short answers to these questions are, respectively, "no" and "it depends." With re
spect to the first question, scientists have appropriated the ordinary term that means ut
~erly unintelligible disorder. But chaotic behavior in the contemporary scientific sense 
1s manifestly intelligible, and the word "chaos" may lead to rnisunderstandings as weil 
as legitimate interest. So, in the first part of my presentation, 1 will offer a characteriza
tion of chaos theory and briefly address the use of this term in scientific enterprises. 

That discussion will enable me to address the second and more pressing question 
of the status of these enterprises. Is chaos theory a theory at all? Is it a science at all? 
My intention in posing these questions is not to be belligerent or merely clever. 
Rather, 1 mean for these questions to lead to a philosophical evaluation of chaos theo
~- 1 will use various philosophical conceptions of the nature and structure of scientif-
1c theories to help understand this field ofresearch, and 1 hope in the process to re
flect on the adequacy of these philosophical conceptions as weil. So in the second 
part of my presentation I will consider chaos theory in terms of Kuhnian notions, in
cluding that of disciplinary matrices. 1 will consider chaos theory in terms of the se
mantic conception of theories as models, and of Hacking's notion of a "style" of sci
entific reasoning. These considerations will lead me to suggest that chaos theory, 
while not qualifying as a Kuhnian scientific revolution, nonetheless represents an im
portant new development in the sciences: the emergence of a new constellation of 
models and techniques and a new practice of scientific reasoning. 

2. A Description of Chaos Theory 

The central insight of chaos theory is that complex and unpredictable behavior can 
occur in systems governed by mathematically simple equations. This field of re
search has enjoyed tremendous growth in recent years. In 1980, no full-length books 
had been published on chaos, but by 1990 there were 125 books or conference re
ports, as weil as over 4000 research papers (Dresden 1992, p. 10). But what exactly is 
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chaos theory? I suggest the following definition: chaos theory is the qualitative 
study of unstable aperiodic behavior in deterministic nonlinear dynamical systems. 

Beginning at the very end of this definition, we should note that the ward "system" 
commonly means a situation investigated by scientists. By specifying the numerical 
value of all quantitative features of a system, one obtains a compact description of the 
way the system is at a certain time: the "state" of the system. A dynamica/ system in
cludes both a recipe for producing such a mathematical description of the instantaneous 
state of a system and a set of rules, or "evolution equations," for transforming the cur
rent state description into a description for some future, or perhaps past, time. 

Given the state of a dynamical system and the evolution equations, it is possible to 
calculate the state at other times by computing the changes in a system's variables in 
small increments. This procedure has the disadvantage of often becoming computa
tionally unwieldy-such an "open-form" solution can require burdensome calcula
tions. Same dynamical systems can be manipulated to yield a closed-form solution: 
a simple formula that allows one simply to plug the final time into the formula and 
find the final state of the system. Although very few problems allow a closed-form 
solution, this approach was long presumed to be the norm for most physical sciences: 
if a system did not allow such a solution, one sought an approximation. 

One distinguishing mark of the dynamical systems of interest for chaos theory is 
the presence of nonlinear terms in the equations, terms such as x2 or sin(x) that may 
stem from the inclusion of such factors as frictional forces or limits to biological pop
ulations. The nonlinearity of the equations usually renders a closed-form solution im
possible. So researchers into chaotic phenomena seek a qualitative account of the be
havior using mathematical techniques to "provide some idea about the long-term be
havior of the solutions" (Devaney 1986, p. 4). 

A closed-form solution may allow one to predict, for example, when three planets 
orbiting a star will line up, whereas a qualitative study would be more interested in 
discovering what circumstances will lead to elliptical orbits as opposed to, say, circu
lar or parabolic ones. Mathematical research in this field goes by the name "dynami
cal systems theory." lt typically asks such questions as, what characteristics will solu
tions of this system ultimately exhibit? And how does this system change from ex
hibiting one kind of behavior to another kind? Chaos theory is a specialized applica
tion of dynarnical systems theory, or "dynamics." 

While qualitative questions can be asked about almost any dynamical system, 
chaos theory focuses on certain forms of behavior-behavior which is unstable and 
aperiodic. Instability means that the system never settles into a pattern of behavior 
that resists small disturbances. A system marked by stability, on the other hand, will 
shrug off a small jostle and continue about its business lik:e a marble which, when 
jarred, will come again to rest at the bottom of a bowl. 

Aperiodic behavior occurs when the state of the system never exactly repeats it
self. Unstable aperiodic behavior is thus highly complex: it never repeats and it con
tinues to manifest the effects of any small perturbation. Consider how much of 
physics is concemed with periodic behavior-the harmonic oscillator and the two
body problem. There was a methodological presumption that if you could not ap
proximate to such behavior, you had noise. But sometimes that noise is chaos. A dis
tinguishing feature of the systems studied by chaos theory, and a !arge part of what 
makes the field so exciting to researchers, is that unstable aperiodic behavior can be 
found in mathematically simple systems. These systems bear the labe! deterministic 
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because the equations mak:e no explicit reference to chance mechanisms: no averag
ing over subsystems, no probabilistic branching, no noise tenns. 

Descriptions of chaotic behavior celebrate their lOOth anniversary this year. 
Chaos theory, on the other hand, is only three decades old at most. As an aside, it 
should be noted chaos is an appropriate labe! only when such behavior occurs in a 
bounded system. An explosion does not qualify as chaotic behavior in this sense. 
Note also that the systems studied by chaos theory are strictly classical-medium 
sized objects travelling at moderate speeds. To illustrate the new and distinctive 
image of complexity that operates in chaos theory, 1 turn now to a discussion of a 
long-standing problem in classical physics: the problem of the onset of turbulence. 

35 

Turbulence remains an unsolved problem for classical physics . One of the few 
theoretical approaches to this problem before chaos theory was the account suggested 
by Lev Landau (1944). The Landau model seeks to understand turbulence by describ
ing how smooth fluid flow becomes disrupted as the speed (for example) of the fluid 
past an object is increased. By understanding how turbulence begins, it is hoped that 
some clues can be found to the nature of full-blown turbulent behavior (see the dis
cussion in Kellert, Stone and Fine 1990). 

Imagine a creek in which water flows past a !arge rock, and a device downstream 
from the rock measuring the velocity of the water at one point. For steady flow, the 
device will register a constant value, but as the water increases in speed, the smooth 
flow lines around the rock begin to bend, causing undulations that detach into small 
eddies that move downstream in time. As one of these eddies passes our measuring 
device, the velocity will register an increase, then a decrease, and then return to the 
undisturbed value until another eddy passes by. The sequence of velocity measure
ments-the time series--changes from constant to periodic behavior. 

Perhaps the most important arena for understanding dynarnical systems is state space 
(sometimes called "phase space"), a mathematically constructed space where each di
mension corresponds to one variable of the system. Thus, every point in state space rep
resents a full state description of the system, and the evolution of the system manifests it
self as the tracing out of a path, or trajectory, in state space. This method is extremely 
useful, because it is often possible to study the geometric features of these trajectories 
without explicit knowledge of the solutions they represent. The characterization of pos
sible trajectories in state space according to their "shape"-a kind of topological taxono
my--constitutes a major element of the mathematical apparatus of chaos theory. 

Consider a mathematical representation of all possible states of the creek--every 
point in this state space corresponds to a different configuration of the fluid flow. In 
the case of steady flow, the behavior of the system is characterized by a single attract
ing point. No matter where you begin in the state space, no matter how you stir up 
the creek, the system will eventually wind up moving along smoothly with a constant 
velocity everywhere in the creek bed. The transition to the "small eddies" behavior 
has a mathematical counterpart in the change from an attractive point to an attractive 
periodic cycle in state space. Such a change in the nature of a system 's behavior as a 
parameter is varied is tenned a bifurcation, and dynarnics often involves the investi
gation of different types of bifurcations. 

As the speed of the creek increases, the behavior of the flow becomes more compli
cated. But we can follow one scenario for the transition to turbulence, where the faster 
flow mak:es smaller eddies appear within the original ones. The time series of velocity 
measurements will now vary with two frequencies. The system has undergone another 
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bifurcation and the point representing the state of the system in abstract state space now 
spirals around a two-dimensional torus, or doughnut shape. If the two frequencies are 
not rationally commensurate, the trajectory will wind around the torus forever and 
never return to its starting point. This situation is labeled quasiperiodic (or multiply pe
riodic) behavior and can best be appreciated by imagining a clock with two hands, one 
of which circles the clock face every hour and one of which takes rt hours to describe a 
circle. If we start the clock with both hands at twelve, they will never again meet at 
twelve; such a system is deterministic and easily predictable, but not periodic. 

The essence of the Landau model's explanation of the onset of turbulence is this: 
as the flow rate is increased, the quasiperiodic motion on the two-dimensional torus 
becomes unstable; some small disturbance will lead to three-dimensional quasiperiod
ic motion, then four-dimensional, and so on to infinity. The onset of turbulence 
represents the piling up of huge numbers of incommensurable frequencies, represent
ing the excitation of more and more degrees of freedom-more and more eddies with
in eddies. Quasiperiodic motion on a very high dimensional torus (and, in the limit, a 
torus of infinite dimensions) will never repeat itself and will be utterly unpredictable. 
So the Landau model suggests that complex, apparently random turbulent behavior is 
best understood as akin to a clockmaker's shop with a huge number of clocks each 
ticking at a different, irrational rhythm. 

One of the birthplaces of chaos theory was in an alternative account for the onset 
of turbulence, an account that challenged this picture of complexity. K.nown as the 
Ruelle-Takens-Newhouse (RTN) model, this account rejects the idea that complex be
havior must be modeled by the agglomeration of incommensurable frequencies . The 
transition to turbulence is explained instead by the appearance in state space of an at
tractor that represents very complicated dynamical behavior, yet is described by a 
very simple set of mathematical equations. Such a novel mathematical object is 
called a "strange attractor." 

In the RTN model, the behavior of fluid flow past an obstacle follows the path laid 
down by Landau only up to the appearance of a two-dimensional torus. After that 
point, a further increase in the flow rate can render this attractor unstable, and the be
havior will change to weak turbulence characterized by motion on a strange attractor 
(Ruelle and Takens 1971; Newhouse, Ruelle, and Takens 1978). The strange attractor 
has several imponant characteristics: (1) it is an attractor, that is, an object with no 
volume in state space toward which all nearby trajectories will converge; (2) it typi
cally has the appearance of a fractal, a stack of two-dimensional sheets displaying a 
self-similar packing structure; (3) motion on it exhibits a form of instability known as 
sensitive dependence on initial conditions, which 1 will discuss below; and (4) it can 
be generated from a very simple set of dynarnical equations. 

The idea that complex and unpredictable behavior such as turbulence can be un
derstood by investigating simple dynamical systems is at the heart of chaos theory. 
The RTN model made this idea mathematically plausible, and the work of other math
ematicians, theoreticians, and experimenters in the seventies has added evidence of 
the fruitfulness of chaos theory. Tue meteorologist Edward Lorenz laid the ground
work for this approach with his discovery of a strange attractor in a highly simplified 
set of equations derived from a model for fluid convection (Lorenz 1963). Lorenz 
took the Navier Stokes equations for viscous fluid flow, equations which have no gen
eral solution, and truncated them and reduced them to a system of three ordinary dif
ferential equations. By using a computer to plot the trajectory of his system, Lorenz 
created the first picture of a surprising new geometrical object: a strange attractor. 

The behavior of this system, known as the Lorenz system, exhibits the form of in-
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stability known as sensitive dependence on initial conditions, a distinguishing charac
teristic of chaotic behavior. A dynamical system that exhibits sensitive dependence 
on initial conditions will produce markedly different solutions for two specifications 
of initial states that are initially very close together. In fact, given any specification of 
initial conditions, there is another set of initial conditions close to it that will diverge 
from it by some required distance, given enough time. 

Lorenz spelled out the consequences of his discovery as follows: "lt implies that 
two states differing by imperceptible arnounts may eventually evolve into two consid
erably different states. lf, then, there is any error whatever in observing the present 
state-and in any real system such errors seem inevitable-an acceptable prediction 
of an instantaneous state in the distant future may weil be impossible" (1963, 133). 

In the case of a strange attractor, the action of chaotic dynarnical systems often 
produces objects with the appearance of infinite puff pastry-stacks of sheets that are 
themselves two-dimensional, but stacked in a never-ending self-similar structure that 
seems to intrude into the three-dirnensional space. The fractal dirnension of such an 
object, conceived as a measure of its "intrusiveness," is more than 2 but less than 3. 
The fractal dirnension of an attractor thus provides a quantitative means for character
izing its topological features. Note that not all strange, or fractal, attractors are the re
sult of chaotic dynarnics. Nonetheless, much of the work in chaos theory studies 
chaotic strange attractors, and 1 am concentrating on the work of this so-called 
"strange attractor" school of nonlinear dynarnics. 

The qualitative approach used in chaos theory emphatically does not mean that no 
precise numerical results are available. Another quantitative characterization of 
chaotic systems is given by the Lyapunov exponents, which measure the degree of 
sensitivity to initial conditions and thus the degree of unpredictability. The measure
ment of Lyapunov exponents can be used even when the trajectories of a dynarnical 
system do not lie on an attractor: one chooses a trajectory as a standard and measures 
the growth or shrinking of small displacements from it. lt should be noted that 
strange attractors appear only in chaotic dissipative systems. For Harniltonian sys
tems, where energy is conserved, there is no convergence onto an attractor. lnstead, 
trajectories are confined to a surface of constant energy. Chaotic behavior can occur 
in such systems, but instead of strange attractors with fractal dimension, the trajecto
ries will fill the allowed energy surface which may itself display an extremely compli
cated structure (Walker and Ford 1969). In this paper 1 concentrate on dissipative sys
tems, but permit me to note that chaos theory investigates energy-conserving systems 
such as planetary orbits and particle accelerators as weil. 

In conservative systems, as in dissipative ones, much attention has been focused on 
the way a system changes from ordinary behavior to chaos. One simple dynarnical 
system, the logistic map, has served as an exemplary model for the transition to chaos. 
ln this dynamical system, initially used to study fluctuations in anirnal populations, Xn 
represents the population in year n and the evolution equation is Xn+l = axn(l - xn)· 
As the pararneter a is varied, this extremely simple system displays an extraordinary 
range of behavior. For instance, the long-term behavior of the system will change 
from stable equilibrium to periodic fluctuations. With higher values of a, the period of 
the fluctuations doubles repeatedly, until full-blown chaotic behavior is reached. 

Besides this "period-doubling" route to chaos, there are two other transitional sce
narios that have received some theoretical attention: the transitions via quasiperiodici
ty and intermittency. Quasiperiodicity is the route described in the RTN model, where 
a torus in state space changes into a strange attractor. lntermittency occurs when a pe-
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riodic signal is interrupted by random bursts that arrive unpredictably but increasingly 
often as a parameter is increased. lt should be noted that while chaos theory permits 
qualitative understanding and even some quantitative prediction with regard to these 
three routes, no one has yet established necessary and sufficient conditions for deter
mining which type oftransition will occur in a given system. But when a system 
manifests aspects of a certain type of transition, the mathematical theory pertaining to 
that generic type can be applied. 

The qualitative study of chaotic dynarnical systems is mathematically interesting, 
but how can it be of use in experimental situations in which we do not know the equa
tions governing the physical system's behavior? One of the most important methods 
for discovering and analyzing chaos in dissipative systems is the reconstruction of at
tractors, a procedure that extracts the geometric features of a system 's behavior from 
the time-series record. This method, developed by the physicists N. Packard, J. 
Crutchfield, J. Farmer, and R. Shaw together with the mathematical work of Aoris 
Takens (1981), allows researchers to study qualitative features without solving (or 
even knowing) the equations governing a system. The basic idea is to reconstruct a 
multidimensional attractor from the time series by plotting, say, x(t) versus x(t+'t) and 
x(t + 21), where 't is a suitable time-lag (Packard et al. 1980, p. 713). Thus, for the 
three-dimensional case, three measurements of the same variable serve as three inde
pendent variables in order to specify the state of the system. As they write, "the evo
lution of any single component of a system is determined by the other components 
with which it interacts. Information about the relevant components is thus implicitly 
contained in the history of any single component" (Crutchfield et al. 1986, p. 54). 

The reconstruction of attractors creates a simulated state space. Because the most 
important properties of strange attractors are topological, almost any set of coordi
nates can be used to discern these properties, so this method is usually a reliable guide 
to the dynamical behavior of the system under study (Shaw 1981, 222). Numerical 
simulations have confirmed that reconstructing an attractor in this way yields a repre
sentation in the constructed state space that is "faithful" to "the dynamics in the origi
nal x, y, z space" (Packard et al. 1980, 714).2 Faithful, that is, to the important geo
metric features responsible for the qualitative behavior of the system: features such as 
the stretching and folding that produces fractal layering, and the number of attracting, 
repelling, and saddle points in the state space. 

Once a reconstructed picture of the dynamics is available, researchers may wish to 
determine the dimension of the attractor. Tue fractal dimension may be computed by 
various techniques that take off from the Hausdorff-Besicovitch definition of topolog
ical dimension, including an analysis of the density of points on the attractor within 
spheres of increasing size (Moon 1987, p. 220). The development of more efficient 
ways to calculate the dimension of attractors, and the invention of newer, even more 
informative quantitative measures for their topological features, attract a tremendous 
amount of interest among those currently working in chaos theory. 

Another useful analytical tool for studying reconstructed attractors with few de
grees of freedom is the Poincare surface-of-section. This method involves examining 
the reconstructed trajectories of a system as they pass through a plane in state space. 
Imagine a very thin phosphorescent screen that slices the attractor. Instead of trying to 
visualize the attractor itself, the surface-of-section allows us to pay attention only to 
the pattem of glowing Spots where the trajectories intersect the screen. Since a two-di
mensional display is easier to examine, these surfaces-of-section are often used to look 
for the characteristic doubling of paths on the period-doubling raute to chaos or for the 
intricate folded structure that often signals a chaotic system (Moon 1987, p. 53). 
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If the system is highly dissipative, the surface-of-section will appear tobe very 
thin-practically a line segment. In this case, another analytic technique is used to 
discover whether the system is chaotic or "merely stochastic." If such a sy~tem were 
stochastic-meaning, not govemed by a few deterministic equations-we would ex
pect the trajectory to be randomized each time it passed through the thin segment on 
the plane. So we plot the position along the segment versus the position on the next 
pass through, and we do this repeatedly. If the points so plotted fit along a "well-de
fined curve" instead of a random scatter, this shows that the irregular behavior is not 
mere randomness but in fact deterrninistic chaos (Shaw 1981, p. 224). 

This method, which produces what is known as a "first-retum map," effectively 
reduces the study of the system to an analysis of an iterated one-dimensional discrete 
mapping. If the first-retum map has a quadratic extremum, for instance, the entire 
analysis of period-doubling can be applied (Berge, Pomeau, and Vidal 1984, p. 219) . 
Moreover, the first-retum map can provide a measure of the Lyapunov exponent. By 
fitting a curve to the points on the map and then averaging the slope over the curve, 
an approximate measure of the degree of sensitive dependence on initial conditions 
can be obtained (Shaw 1981, p. 224). 

The routes to chaos, sensitive dependence on initial conditions, strange attractors 
with elaborately folded fractal structure, and other elements of chaos theory have 
been reported in experimental systems. These systems vary from measurements of 
brain wave activity to yearly pattems of measles outbreaks to instabilities in the elec
trical conductivity of crystals to the wobbling of certain coffee-table toys (see Holden 
1986; Hao 1984 ). Allow me to also mention the pulsations of variable stars, the 
transmission of soundwaves over the ocean bottom, the fibrillations of hearts during 
cardiac arrest, and the orbit of Pluto. Some of these examples of chaotic behavior 
have been convincingly documented in laboratory settings, while some of the exam
ples of low-dimensional chaos outside the Iaboratory are still the subject of lively de
bate. But the interplay of theory and practice, aided by computer simulations, contin
ues to expand the repertoire of models and techniques. To conclude this section, if we 
asked, Is it really "chaos," the answer is No, of course not, not in the ordinary sense 
of the ward. But it is certainly not "order" in the ordinary sense, either. 

3. An Evaluation of the Study of Chaotic Dynamics 

Several writers, working in the physical sciences, philosophy of science, and other 
field s, have characterized chaos theory as "revolutionary" in the sense ofThomas 
Kuhn 's 1962 book (Devaney 1990, p. 1; Kellert, Stone and Fine 1990, p. 103; Hayles 
1990, p. 169; Ruelle 1991, p. 66). James Gleiclc, in his bestselling joumalistic history 
of chaos theory, explicitly characterizes the development of this field as a scientific 
revolution in the Kuhnian sense. In the chapter of his book entitled "Revolution" he 
writes, "A few freethinkers working alone, unable to explain where they are heading, 
afraid even to tel! their colleagues what they are doing-that romantic image lies at the 
heart of Kuhn 's scheme, and it has occurred in real life, time and time again, in the ex
ploration of chaos" (1987, p . 37). But even granting Gleick's documentation of the 
hostility, resentment, discouragement and resistance encountered by scientists working 
on chaos, such resistance alone does not constitute sufficient evidence that a scientific 
revolution has occurred. 

Such a romantic characterization of scientific revolutionaries may indeed be pre
sent in Kuhn's account, but Gleick overstates the case in suggesting that it forrns the 
heart of an adequate conceptualization of Kuhnian scientific revolutions. Kuhn de
scribes three "defining characteristics" of scientific revolutions: first, the "rejection of 
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one time-honored scientific theory in favor of another incompatible with it." Second, 
"a shift in the problems available for scientific scrutiny and in the standards" by 
which to judge acceptable problems or solutions; and third, a transformation of "the 
scientific imagination," best described as a "transformation of the world within which 
scientific work [is] done." 

Utilizing this understanding of what Kuhn means by a scientific revolution, 
Katherine Hayles has made perhaps the most convincing case for the revolutionary 
character of chaos theory. Relying on Gleick's interviews with practitioners in the 
field such as physicist Bemardo Huberman, Hayles does point out distinct changes 
wrought by chaos theory in the criteria for interesting problems and successful solu
tions-the second of Kuhn's defining characteristics. When Huberman presented his 
chaotic model of eye movements in schizophrenics at a conference of biological sys
tems specialists, it was rejected as irrelevant mathematics. How could an abstract dy
namical system say something interesting about the eye, when it ignored the details of 
neuromuscular function? (Hayles 1990, pp. 169-70). Tue techniques for reconstruct
ing attractors and establishing useful similarities between mathematical models and 
experimental systems which 1 have described in the previous section were seen as un
satisfactory answers addressing uninteresting questions. Hayles suggests that the 
techniques of chaos theory represent a new paradigm for the investigation of compli
cated behavior-a new paradigm whose practitioners appeal to incommensurably dif
ferent standards of successful explanation. 

The mention of incommensurability recalls the well-known question of whether sci
entists live in "different worlds" before and after a revolution, an element of Kuhn's 
third defining characteristic in the !ist above. Without touching the general question, 
one might be willing to accept that chaos theory has brought with it a change in the 
"scientific imagination," and that it does therefore satisfies Kuhn's third criterion. Tue 
only picture of complicated and unpredictable behavior used to be the picture of a wei
ter of competing and interacting systems. But chaos theory reconceptualizes complex:i
ty as one possible outgrowth of simple and deterministic systems. The guiding images 
of order and noise have been reoriented. While Hayles sees the general outline of a 
paradigm shift in a move away from reductionism (p. 170), others have concentrated on 
just this new image of intelligibility (Kellert, Stone, and Fine 1990, pp. 103-4). 

When we finally consider Kuhn's first criterion, however, it becomes impossible 
to fit chaos theory into the role of a scientific revolution. This criterion states that a 
scientific revolution must involve "rejection of one time-honored scientific theory in 
favor of another incompatible with it." Yet no scientific theory was rejected in order 
to make way for chaos. As the astronomer John Barrow has written, "there has been 
no build-up of inconsistences that, suddenly, could be overlooked no longer. Neither 
has there been an inner crisis within some ex:isting paradigm which undermined the 
everyday practice of normal puzzle-solving activities" (1988, p. 4). 

Recall that chaotic behavior occurs in scrupulously Newtonian systems. Nothing 
in nonlinear dynamics corresponds to the postulation of the relativity of simultaneity, 
or the limitations on measurement of noncommuting observables, associated with the 
revolutions of special reiativity and quantum theory, respectively. Chaos theory in
volves no fundamental theoretical change, while a Kuhnian revolution involves "a re
construction of the field from new fundamentals, a reconstruction that changes some 
of the fields ' most elementary theoretical generalizations ... " (Kuhn 1970, p. 85) . 

Neither is there fundamental theoretical change in the specific fieids affected by 
chaos theory. Several writers have contended that the Landau model for the onset of 
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turbulence provided a paradigm in fluid dynamics which was overthrown by the suc
cess of the Ruelle-Takens (RTN) theory of strange attractors (see Gleick 1987, p. 130; 
Kellert, Stone and Fine 1990, p. 104). But the Landau conjecture was long known to 
turbulence researchers not to correspond to the actual transition in many situations. 
One fluid dynamicist, in pointing out this fact, notes that it "appears to have been 
overlooked by many contemporary authors," who were at pains to stress a clear con
trast between the two scenarios (Van Atta 1990, p. 66) . lndeed, it might even be said 
that the Landau conjecture was rediscovered in the literature on turbulence, where it 
had been languishing, in order to be used as an historical foil for the successful RTN 
approach (Jerry Gollub, private communication). 

So, contrary to Hayles, chaos theory cannot be understood as emerging from a full 
fledged Kuhnian revolution. lt fails to satisfy the first of Kuhn 's defining characteris
tics listed above. And in fact the case for the third characteristic seems shaky as weil. 
Chaos theory does satisfy Kuhn's second criterion, a change in what counts as an im
portant problem and an interesting solution, and I will retum to this point later. But 
where Gleick sees the overthrow of an entire scientific worldview, it is more accurate 
to see the profound continuities between chaos theory and the science that carne be
fore it. These who study nonlinear dynamical systems still strive to apply simplified 
mathematical models, still seek quantitative results, and still seek to generalize and 
unify their understanding. The discovery of low-dimensional attractors in hitherto in
comprehensible noise, to quote David Porush, "actually reasserts one of the funda
mental axioms of science-that the universe can be described by detenninistic mathe
matics" (Porush 1990, p. 438). Indeed, this is precisely the reason chaos theory is so 
exciting to many researchers. 

lt is notable that the subtitle of James Gleick's book in fact announces not a chron
icle of revolution, but of "making a new science." For if the emergence of chaos the
ory does not fit Kuhn 's picture of a scientific revolution, it seems very likely to fit 
much better into his picture of the emergence of a newly mature science. Such a new 
science would be marked by the presence of the three elements of a Kuhnian disci
plinary matrix : symbolic generalizations-the fonnal expressions that meet with gen
eral acceptance, models-the analogies and metaphors used in applying these formu
lae, and exemplars- the paradigmatic cases of solved problems that are used to initi
ale newcomers into the science (Kuhn 1970, 1977). 

lt would make sense for an episode marking the birth of a new science to give the 
appearance of a revolution; as Kuhn remarks, "research during crisis very much resem
bles research during the pre-paradigm period" (1970, p. 84). Before the emergence of a 
successful disciplinary matrix, a number of schools compete over a fif':!d of scientific 
inquiry. Each may have exemplars of successful research, but at the transition to matu
rity there emerges a dominant approach, which allows the practitioners to cease quarrel
ing over fundarnentals and commence normal "puzzle-solving" werk (Kuhn 1970, pp. 
178-9). Certainly some aspects of the development of chaos theory, particularly with 
regard to the study of fluid turbulence, fit this depiction of the transition to maturity. 

In addition to Landau 's theoretical account of the onset of turbulence, there were 
at least two other distinct movements in the modern scientific study of turbulence be
fore the 1980's. The statistical approach, which began with Reynolds, focussed on 
the behavior ofvarious averages associated with variables describing the flow. This 
viewpoint sought to characterize the turbulent velocity field in tenns of a mean flow 
plus a perturbation, where the perturbations were "unpredictable or incomprehensible 
in detail" (Chapman 1985, pp. 21-22). The structura/ approach, on the other hand, fo
cussed on coherent structures that appear within turbulent flows, although still con-
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ceiving the occurrence of such structures as govemed by random events (Chapman 
1985, p. 27). Each of these schools produced valuable work in the attempt to under
stand turbulence, but in a 1978 historical review of fluid dynarnics in Physics Today 
we read that "as of now, it cannot be said that any turbulence theory has a greater like
lihood of representing real phenomena than any other" (Emrich 1978, p. 39). 

The presence of competing schools in fluid dynamics highlights the absence of 
any successful theoretical treatment of turbulence. In fact, a distinct note of des pair 
can be found in many of the writings on turbulence before 1980. Without any general 
solution for the Navier-Stokes equations, there was simply no general analysis of fluid 
motion. Tue theories of turbulence available were described as "crude," "frustrating," 
and faced controversy on every point. Practicing engineers seeking to use one of 
these theories would be "repelled by its complexity and by its inability to teil them 
anything that they actually wanted to know" (see White 1979, p. 1, p. 311; Bradshaw 
1976; Leslie 1973, vii). 

One researcher said in 1968 that "the situation of turbulence theory is somewhat de
pressing, because ... our understanding of turbulence is practically nil, despite the last 30 
years of effort. But undue pessimism is out of order, as the position could change 
ovemight" (Saffman 1968, p. 611). Chaos theory did not change the situation ovemight, 
but the success of the RTN theory of the transition to turbulence, and especially the news 
of the detection of a strange attractor in closed-cell convection, generated a great deal of 
excitement in the world of fluid dynamics. Deterministic chaos raised the hope that a 
successful exemplary solution to at least one outstanding problem was available. 

But the question of whether there is a successful new exemplar in the study of tur
bulence is as yet undecided. The pursuit of chaos in other fields is even more contro
versial. So the successes of chaos theory are by no means so convincing as to have 
established entirely new, successfully maturing science. But what about the other ele
ments of a new Kuhnian disciplinary matrix-symbolic generalizations and models? 
(see Kuhn 1977, p. 463) 

With no new theoretical postulates, chaos theory does not license the use of any 
new symbolic generalizations. Instead, we find drastically different ways to apply old 
generalizations - f = ma will now systematically be fleshed out with a non linear 
force law, and the mathematical manipulations exercised on Newtonian symboliza
tions will diverge from the traditions of perturbation analysis and the approximation 
of exact solutions. But if new symbolic generalizations are a necessary condition for 
a new science, then chaos theory cannot fill the bill. Kuhn insists that the interpreta
tion or implementation of these formulae are not practiced identically within a scien
tific community: members of that community will never challenge an utterance of one 
of these symbolic generalizations, but they may weil disagree with how they are "cor
related with the results of experiment and observation" (1977, p. 464). 

Such an openness to variations in mathematical technique as Kuhn countenances 
would render all of nonlinear dynamical systems theory as a mere variation on what 
carne before. For no one working on chaotic dynamics denies the validity of the Navier
Stokes equations, for exarnple. They do, however, do a variety of non-classical things 
with them, of the sort I have discussed above-interpreting, implementing, and applying 
classical equations in very new ways. Each of these new mathematical techniques has 
bound up with it conceptual, metaphysical, and experimental commitments. I will have 
more to say about the role of these new mathematical techniques in the evaluation of 
chaos theory. Before doing so, I would like to turn to another topic, the role of models. 

Models play the role of the final element of a disciplinary matrix. And new mod-
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els of dynamical behavior form the heart of chaos theory. As such, they provide the 
best support for conceiving of this research as carried out within a new disciplinary 
matrix. l will now turn my attention away from Kuhn to a conception of scientific 
theories which highlights the role of models. This view, known as the semantic con
ception of theories, may be useful for making sense of the emerging study of chaos 
(see Kellert 1993, chapter 4). 

For Kuhn, models can be heuristically useful analogies or deeply held metaphors that 
constitute an ontology (1977, p. 463). But they are only part of a disciplinary matrix. 
Tue semantic conception of theories seeks to free the essential features of a theory from 
the metaphoric trappings of its formulation in a particular language, and so conceives of 
scientific models as abstract mathematical structures that can be articulated in several 
presentations in language, all equivalent (Suppes 1967). In this way, the notion of a 
model is both narrower and broader than Kuhn 's: in the semantic conception, a model 
does not include the natural-language formulation and attendant metaphorical connota
tions that are used to present the mathematical structure for consideration. But the role 
of models is much broader: they do not merely make up part of a disciplinary matrix, 
they are absolutely central to the constitution of a scientific theory. 

In the semantic conception, a theory is just a set of models together with applica
tion rules. A model is a mathematical structure, and the application rules detail the 
construction of structures of empirical data. The theory is applicable to the data if 
there exists an isomorphism between these structures. This view contrasts with a 
more traditional view of theories, which holds that a theory is a body of theorems ex
pressed in language, together with a set of coordinating definitions that supply empiri
cal content to the terms in the language. 

Bas Van Fraassen, a proponent of the semantic conception, has claimed support for 
this view from the "actual form of presentation" of scientific theories (1980, p. 65). 
Chaos theory provides some additional support. This support does not come from the 
fact that both nonlinear dynamics and some formulations of the semantic view make 
use of state space. 1 regard this as a coincidence.3 The deeper affinity is due to the 
fact that the actual presentation ofresearch in nonlinear dynamics, whether in text
books or published reports, normally treats the theoretical aspe.cts of the results in 
terms of mathematical models. Models such as the logistic map, the RTN model, and 
the Roessler attractor provide a toolbox of mathematical structures that are then ap
plied to a wide variety of sources of empirical data. 

To my knowledge, no one has ever attempted a formulation of nonlir.ear dynamics 
in terms of a set of axioms and deductive consequences; no one is likely to do so in 
the foreseeable future. Chaos theory remains a cluster of models, and the applicabili
ty of one of those models to any given experimental situations cannot be determined 
in advance. Patrick Suppes describes just this kind of situation when he writes that 
sometimes what we are faced with is "not a theory with a genuine logical structure 
but a colle.ction of heuristic ideas" (1962, p. 260). Some may see this Jack of a unify
ing theoretical framework as an indication of the immaturity of chaos theory. 1 hold 
that the unifying element of chaos theory lies instead in the dynamical, geometric ap
proach to the analysis of data. 

These techniques for analyzing data provide a second realm where the semantic 
view of theories makes contact with chaos theory. One of the strengths of the seman
tic view is the opportunity it opens for an in-depth analysis of the procedures used to 
transform experimental data into a mathematical structure that can be put into an iso
morphism with the structures of the theoretical models. Suppes describes a "hierar-
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chy of theories" that constitute a complex "conceptual grinder": an elaborate method
ology for the transformation of observational and experimental data into a form that 
can be compared with theory (1967, p. 62-3). In the case of chaos theory, the tech
niques ofreconstructing attractors, surfaces-of-section, and first-return maps perform 
just this function of transformation. The appeal to simple coordinating definitions 
does violence to the rich layers of methodology-the application rules-which should 
in fact be considered part of the theory. 

The role of these techniques of application is absolutely crucial for an accurate 
characterization of chaos theory. If we focus only on the mathematical structures at 
the highest level of generality, we run into trouble because these structures remain the 
same as before; chaos theory does not introduce any new fundamental Iaws of nature . 
For example, as I have said with regard to fluid dynamics, the Navier-Stokes equa
tions remain unchallenged, and thus they are already a correct "model" for chaotic be
havior, in the strict sense of "model" employed by the semantic view. Every structure 
revealed by the conceptual techniques of dynamical transformation and reconstruction 
must be isomorphic to some substructure of the fundamental equations for fluid flow. 
But while the Navier-Stokes equations are the correct mathematical structure for fluid 
behavior, these equations fail to provide a useful mathematical technique for under
standing most actual fluid behavior. 

I think there is a tension here between the technical and the heuristic senses of the 
word "model." In brief, these equations are a correct model, but worthless for mod
elling: a good mathematical structure, an inadequate mathematical technique. Chaotic 
dynamics changes the hierarchy of models, the application rules, but not the highest 
level models of our theories. This is the reason I contend that the interesting and im
portant aspects of chaos theory, including any possible revisions to our metaphysical 
or epistemological positions, derive from a change in methodology. 

To conclude this discussion of the semantic view of theories, !et me emphasize just 
this point: chaos theory changes our methods for applying models to actual systems. 
To the extent that the semantic view considers Newtonian mechanics and Hamiltonian 
mechanics the same theory, merely in different formulations , it obscures the impor
tance of mathematical techniques . But to the extent that the semantic view encour
ages us to look at the hierarchy of models, the mathematical techniques, used to build 
bridges between high-level models and actual systems, it brings out just what is im
portant in chaos theory. 

Up to this point, I have suggested that chaos theory does not qualify as a scientific 
revolution in the Kuhnian sense, and that there are serious difficulties in conceiving it 
as a new science with a new and complete disciplinary matrix. 1 have made use of the 
semantic view of theories to point out the importance of mathematical models and 
methodologies of application in the presentation of nonlinear dynamics. 1 would now 
like to apply this emphasis on methodology, technique, and practice to the Kuhnian 
picture. In doing this, I will follow Joseph Rouse's characterization of the profound 
change in our conception of a scientific theory that comes from taking very seriously 
the role of scientific practice in Kuhn's work. 

Rouse takes issue with the standard depiction of the Kuhnian disciplinary matrix as 
a set of assumptions believed by all the members of a scientific community. Instead, he 
describes it as a set of "exemplary ways of conceptualizing and intervening in particular 
empirical contexts." Leaming to engage in a scientific discipline is thus "more like ac
quiring and applying a skill than like understanding and believing a statement." (1987, 
p. 30) Indeed, Rouse highlights the fact that Kuhn's original work included a signifi-
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cant emphasis on "comrnitments to preferred types of instrumentation" and the way 
they were tobe employed (1970, p. 40), "methods and applications" (p. 85), and norms 
of practice (p. 103) as elements of a scientific paradigm in the broad sense. 

On this understanding, the fact that chaos theory does not challenge any fundamental 
physical theory becomes considerably less important for our assessment of its status as a 
new science. Mathematician Morris Hirsch has ridiculed what he calls "the nonexistent 
science of chaos," and from the perspective of a mathematically rigorous theory, he may 
be justified (Hirsch 1989, p. 8). But this theory may provide a new disciplinary matrix, 
as Rouse understands it lf its great prornise pans out, as now seems li.kely, it will consti
tute a revolutionary development without qualifying as a Kuhnian scientific revolution. 

This somewhat paradoxical state of affairs has a precedent in the development and 
widespread application of statistics in the nineteenth century. Ian Hacking has pro
posed a useful way to conceptualize this development in terms of "styles of scientific 
reasoning." According to this account, the successive waves of interest in statistical 
techniques that transformed European science and society in the nineteenth century 
should be understood as the result of the success of a new style of scientific 
reasoning-a pattem of successes which proved revolutionary without being reducible 
to any set of Kuhnian scientific revolutions (Hacking 1987). 

Hacking 's notion of a style of scientific reasoning, based on the work of the histori
an A. J. Crombie, does not deal with personal, idiosyncratic style, but with something 
considerably more expansive in scale. lt is a significantly !arger unit of analysis than a 
Kuhnian paradigm, and a change in style may in fact include changes in the elements of 
several different disciplinary matrices (Hacking, 1992, pp. 2-3; 1983, pp. 458-9). 
Examples of such large-scale styles are mathematical postulation and proof, taxonomic 
ordering, statistical analysis of regularities, and historical analysis of genetic develop
ment. Note that working within a style of scientific reasoning does not entail the belief 
in certain propositions, but rather the practicing of certain ways of reasoning toward 
propositions (1883, p. 454). Such a unit of analysis accords with Rouse's reading of 
Kuhn, for "style" is meant to invoke practice as weil as thinking and sentence-making: 
in Hacking's words, "the manipulative hand and the attentive eye" (1992, p. 3). 

But perhaps chaos theory, and nonlinear dynarnics more generally, should be con
sidered merely a refinement of the long-established style known as the "hypothetical 
construction of analogical models." After all, dynarnical systems theory works by 
constructing simplified mathematical models and then matching them to experimental 
situations that display analogous features. 1 contend that this attempt to assirnilate 
nonlinear dynamics to a preexisting style is no more valid than an attempt to similarly 
co-opt statistical reasoning. For statistical analysis also constructs hypothesized mod
els and seeks to test how weil they serve as analogies for experimental and observa
tional data. The crucial distinction for statistics is that the objects of study are popula
tions, not individual systems. For nonlinear dynamics, the crucial distinction lies in 
the character of the attempted analogy: it seeks to match the long-term, qualitative 
features of a system by analyzing the topological features of the dynamics in state
space. Traditional hypothetical models sought to match the detailed, quantitative fea
tures of the behavior of single trajectories. 

Does chaos theory qualify as a new style of scientific reasoning? Hacking propos
es as a necessary condition that a new style should introduce novel types of objects, 
evidence, sentences, Iaws or modalities, possibilities, and "ways of being a candidate 
for truth or falsehood" (1992, pp. 8-9). Chaos theory has introduced such objects as 
strange attractors and Iyapunov exponents, which qualify as "new" in the same sense 
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as the correlation coefficients and unemployment rates introduced by statistical rea
soning. And if we consider the entire range of studies in dynamical systems, rather 
than just the study of chaotic behavior, we find scientists describing their work as uti
lizing new forms of analysis that complement older techniques. One brain scientist, 
for example, sees the common element in the new dynamical analysis as the attempt 
to reconstruct the dynamics generating the signal, to understand its geometric or topo
logical character. This he opposes to classical signal analysis (such as examination of 
Fourier power spectrum) that only looked at the "signal itself' (Rapp 1990, p. 10). 
New techniques for transforrning data, new methodologies for modelling, new norms 
for what counts as an interesting question or a possible answer, create new sets of sen
tences about which it is possible to ask whether they are true or false. Chaos theory 
introduces a new realm of intelligibility. 

Hacking uses the term "autonomy" to refer to two different features of a new style 
of reasoning. In a narrow sense, a new technique for generating and testing sentences 
qualifies as autonomous if"it can be used to explain something eise, without itself 
having tobe reduced" (Hacking 1987, p. 53). The phenomenon of regression to the 
mean provides an example of the autonomy of statistical law, for the fact that excep
tionally tall parents, for example, have shorter offspring can be explained as a conse
quence of the fact that height follows anormal distribution. "Reduction of this nor
mal distribution to an underlying causal structure," writes Hacking, "is sirnply irrele
vant to this explanation" (p. 53). Dynamical reasoning asserts its own autonomy by 
similarly seeking to understand behavior in terms other than underlying causal mech
anisms . Fluid dynarnicists, for example, write that "the complicated behaviors of a 
thermal-fluid system [at least for small systems] are attributable to the interaction of a 
rather small number of degrees of freedom" (Keefe, et al., 1990, p. 56) . The RTN 
model for the onset of turbulence thus explains the emergence of certain type of be
havior by elucidating what 1 ca!! "geometric mechanisms." 

In a broader sense, Hacking requires that a style of reasoning prove itself au
tonomous from the micro-history of its birth. lt must persist and grow and take root 
in an institutional context beyond the circumstances of its origin, and not die out 
when the fashion passes. A style achieves this form of autonomy by hamessing "its 
own techniques for self-stabilization. That is what constitutes something as a style of 
reasoning" (Hacking 1992, p. 8, 12). Has dynamics succeeded in becoming a self-au
thenticating realm of the true-or-false? Has it ceased to require authorization from 
other techniques for creating and justifying observations and assertions? Perhaps not 
yet. But it is a candidate for a new style. The study of dynamical chaos provides an 
opportunity to observe the tentative emergence of a new style of scientific reasoning, 
in its attempts to emerge from the contingencies of its birth and prove itself applicable 
across a broad range of disciplines. Chaos theory, as a theory of turbulence, is still 
less than a full-fledged theory. Chaos theory, as a representative of dynarnics, may 
become more than a theory. lt may be a new style of scientific reasoning. 

Notes 

l 1 am grateful to Roger Jones, Lisa Heldke, Eric Winsberg, and John Winnie for 
their comments on earlier drafts of this paper. 

2'fh.is method should not be considered universally applicable, however. For exam
ple, one would not expect to get a low-dimensional attractor from data collected at one 
point of a very !arge, spatially extended system with many degrees of freedom (like the 
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Earth's atmosphere). In questionable situations, one may need to collect additional data, 
or to achieve greater accuracy, or to take data from spatially separated points. Eventu
ally, the experimentalist may decide that there is no low-dimensional attractor at all. 1 
have benefitted from discussions with Jerry Gollub and James Crutchfield on this point. 

3yan Fraassen and others have suggested that we characterize the mathematical 
structures of a theory as introducing restrictions on a "state space" that represents all 
logical ly possible configurations of a physical system (Van Fraassen 1972, p. 312). 
But the dynamical systems approach remains at the so-called qualitative level of 
analysis, rather than making "elementary" statements about individual states. 
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