We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that if two free probability-measure-preserving (p.m.p.) ${\mathbb Z}$-actions are Shannon orbit equivalent, then they have the same entropy. The argument also applies more generally to yield the same conclusion for free p.m.p. actions of finitely generated virtually Abelian groups. Together with the isomorphism theorems of Ornstein and Ornstein–Weiss and the entropy invariance results of Austin and Kerr–Li in the non-virtually-cyclic setting, this shows that two Bernoulli actions of any non-locally-finite countably infinite amenable group are Shannon orbit equivalent if and only if they are measure conjugate. We also show, at the opposite end of the stochastic spectrum, that every ${\mathbb Z}$-odometer is Shannon orbit equivalent to the universal ${\mathbb Z}$-odometer.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.