Children with a functionally single ventricle constitute just over 1% of congenital cardiac defects.1 A majority of children with the functionally univentricular circulation undergo a three-staged reconstruction to achieve completion of the Fontan circulation. The first stage is usually performed in the neonatal period, and is either banding of the pulmonary trunk, an aorto-pulmonary shunt alone, or the shunt included as part of the first stage of reconstruction. In recent years, a conduit placed from the right ventricle to the pulmonary arteries is being used as an alternate source of flow of blood to the lungs. The second stage is the bidirectional cavopulmonary anastomosis, the two surgical variations being the so-called “hemifontan”, and “bidirectional Glenn” procedures, while the third stage is the completion of the Fontan circulation, the two surgical variations being either construction of a lateral tunnel, or placement of an extra-cardiac conduit, each being possible with or without a fenestration. In many centres, patients with the functionally univentricular circulation make up one-fifth of the total surgical volume. The syndrome of low cardiac output is quite common in this population through all three stages of reconstruction, and some of these patients will eventually require cardiac transplantation. While conventional therapy, with inotropic support and afterload reduction, remains the mainstay of therapy for the failing heart in children, mechanical support is being increasingly used.3 Most of this experience is limited to extracorporeal membrane oxygenation.2–5 In this review, we discuss the current experiences with extracorporeal membrane oxygenation in patients with a functionally univentricular circulation, and describes some of their unique features. We also focus on the pulsatile ventricular assist devices capable of providing support over the longer term, and other new devices that may have a role in the future in these patients.6