The Mellin-Stieltjes convolution and related decomposition of distributions in M(α) (the class of distributions μ on (0, ∞) with slowly varying αth truncated moments ) are investigated. Maller shows that if X and Y are independent non-negative random variables with distributions μ and v, respectively, and both μ and v are in D2, the domain attraction of Gaussian distribution, then the distribution of the product XY (that is, the Mellin-Stieltjes convolution μ ^ v of μ and v) also belongs to it. He conjectures that, conversely, if μ ∘ v belongs to D2, then both μ and v are in it. It is shown that this conjecture is not true: there exist distributions μ ∈ D2 and v μ ∈ D2 such that μ ^ v belongs to D2. Some subclasses of D2 are given with the property that if μ ^ v belongs to it, then both μ and v are in D2.