In the present study, we investigated the involvement of sulfated glycosaminoglycans in both the in vivo development and adhesion of T. cruzi epimastigotes to the luminal surface of the digestive tract of the insect vector, Rhodnius prolixus. Pre-incubation of T. cruzi, Dm 28c epimastigotes with heparin, chondroitin 4-sulfate, chondroitin 6-sulfate or protamine chloridrate inhibited in vitro attachment of parasites to the insect midgut. Enzymatic removal of heparan sulfate moieties by heparinase I or of chondroitin sulfate moieties by chondroitinase AC from the insect posterior midgut abolished epimastigote attachment in vitro. These treatments also reduced the labelling of anionic sites exposed at the luminal surface of the perimicrovillar membranes in the triatomine midgut epithelial cells. Inclusion of chondroitin 4-sulfate or chondroitin 6-sulfate and to a lesser extent, heparin, in the T. cruzi-infected bloodmeal inhibited the establishment of parasites in R. prolixus. These observations indicate that sulfated glycosaminoglycans are one of the determinants for both adhesion of the T. cruzi epimastigotes to the posterior midgut epithelial cells of the triatomine and the parasite infection in the insect vector, R. prolixus.