We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The article introduces a novel class of 4R1H mechanisms, where 4R indicates four revolute joints and 1H indicates one helical joint. The paper starts with the type synthesis of these mechanisms, which involves combining two kinematic chains with planar and cylindrical motion types into a single closed-loop kinematic chain. If we fix any link in such a chain, we get a workable mechanism. The synthesis procedure considers two options for the relative arrangement of these two kinematic chains. Adding an H joint to the kinematic chain allows us to design mechanisms whose output link performs spatial motion. Using the proposed synthesis procedure, we develop a family of 4R1H mechanisms. Next, we choose one mechanism as a representative example and consider its mobility, singularity, kinematic, and dynamic analysis. Using screw theory, we confirm the mechanism has one degree of freedom and determine its singular configurations. Kinematic analysis provides closed-form expressions to calculate displacements, velocities, and accelerations of all the mechanism links. Dynamic analysis uses these results to compute the motor torque required for one motion cycle. To verify the suggested analytical algorithms and obtained results, we use computer-aided design tools, which allow us to develop virtual and physical prototypes.
While we call programs that are new and exciting ‘artificial intelligence’ (AI), the ultimate goal – to produce an artificial general intelligence that can equal to human intelligence – always seems to be in the future. AI can, thus, be viewed as a millenarian project. Groups predicting the second coming of Christ or some other form of salvation have flourished in times of societal stress, as they promise a solution to current problems that is delivered from outside. Today, we project both our hopes and our fears onto AI. Utopian visions range from the personally soteriological prospect of uploading our brains to a vision of a world in which AI has found solutions to our problems. Dystopian scenarios involve the creation of a superintelligent AI that slips from our control or is used as a weapon by malicious actors. Will AI save us or destroy us? Probably neither, but as we shape the trajectory of its future, we also shape our own.
Technology has been an integral part of biological life since the inception of terrestrial life. Evolution is the process by which biological life seeks to transcend itself in pursuit of more robust life. This chapter examines transhumanism as the use of technological means to enhance human biological function. Transhumanists see human nature as a work in progress and suggest that by responsible use of science, technology and other rational means, we shall become beings with vastly greater capacities and unlimited potential. Transhumanism has religious implications.
This Introduction explores what it means to encounter a poem. What is involved when we read a poem in a book, hear a poem at a poetry slam, or translate a poem for readers of another language? What ideas about “the poem” inform such encounters, shaping what readers and audiences want from poems and what they do with them? This chapter examines the conceptual relation between the terms “poem” and “poetry,” as well as the shifting relations between “poem,” “song,” “hymn,” and other related terms. The Introduction considers how ideas about the poem have changed over history and how they differ between cultures. It then addresses several influential ideas about the poem, especially the notion of the individual poem as a unified whole and the notion of the poem as singular, as valuable in its difference from other poems. This chapter concludes that to encounter a poem is necessarily to encounter a work which, whether as object or experience, is always already entangled with other poems and with ideas of the poem as such.
This chapter argues that the concept of singularity is particularly helpful in examining what is distinctive about the reader's or listener's experience of a poem of literary quality. The chapter compares singularity to comparable concepts, such as difference, uniqueness, and originality, and it argues that singularity has two especially important features: a relation to generality and a relation to the event. This means that singularity is something that happens, something that the reader or listener experiences, rather than an unchanging object independent of readers and listeners. As something that happens, the singularity of a poem may work with, as well as against, conventions shared by other poems. Treating examples by Andrew Marvell, Christina Rossetti, and others, the chapter concludes that a singular poem is singular precisely through its arrangement of poetic conventions, shared social discourses, and general linguistic codes.
In this chapter, we consider the future of AI. We base our speculation on informed discussions of the implications of current socioeconomic and technological trends, and on our understanding of past digital revolutions. This allows us to provide insights on where the economy is heading, and what this may imply for economics as a science. Future avenues for research are identified.
Singularities are central to treating the boundary eigenvalue problems in this book, both singularities of differential equations and those of their solutions. Poincaré was probably the first to recognise their importance and treat them conceptually, by introducing what he called the rank. However, I have chosen a slightly different definition, introducing the ’singularity’ s-rank. With this definition, the non-elementary regular singularity is standard, with s-rank 1. Given this concept, the singularities of our treated differential equations always have half-integer s-rank, because of the order (2) of the underlying differential equation. Moreover, regular and irregular singularities are distinguished, for s-rank larger than 1 or not. There are two types of regular singularities – s-rank 1 and s-rank 1/2 – the latter called elementary singularities. Among the irregular singularities are those having integer s-rank and odd half-integer s-rank. The irregular singularity whose s-rank is smallest is R = 3/2. The standard singularity is not – as with Poincaré – the elementary one, but the non-elementary regular singularity of the underlying differential equation with s-rank 1.
Higher special functions emerge from boundary eigenvalue problems of Fuchsian differential equations with more than three singularities. This detailed reference provides solutions for singular boundary eigenvalue problems of linear ordinary differential equations of second order, exploring previously unknown methods for finding higher special functions. Starting from the fact that it is the singularities of a differential equation that determine the local, as well as the global, behaviour of its solutions, the author develops methods that are both new and efficient and lead to functional relationships that were previously unknown. All the developments discussed are placed within their historical context, allowing the reader to trace the roots of the theory back through the work of many generations of great mathematicians. Particular attention is given to the work of George Cecil Jaffé, who laid the foundation with the calculation of the quantum mechanical energy levels of the hydrogen molecule ion.
The first book on the explicit birational geometry of complex algebraic threefolds arising from the minimal model program, this text is sure to become an essential reference in the field of birational geometry. Threefolds remain the interface between low and high-dimensional settings and a good understanding of them is necessary in this actively evolving area. Intended for advanced graduate students as well as researchers working in birational geometry, the book is as self-contained as possible. Detailed proofs are given throughout and more than 100 examples help to deepen understanding of birational geometry. The first part of the book deals with threefold singularities, divisorial contractions and flips. After a thorough explanation of the Sarkisov program, the second part is devoted to the analysis of outputs, specifically minimal models and Mori fibre spaces. The latter are divided into conical fibrations, del Pezzo fibrations and Fano threefolds according to the relative dimension.
Chapter 11 returns to the beginning by revising the arguments on negativity made by Adorno and Agamben, as well as George Spencer Brown’s language of distinctions and of the nothing to help formulate this sense of renewed strategic need for both in-forming and un-informing. It is not much that we offer by way of a way out, but that is the point; it must remain in an uneasy and slightly impoverished space if it is to survive, it is strategy from the shadow.
The first chapter analyzes the role of verisimilar realism in two trials: the summary trial officiated by Dioneo between the servants Tindaro and Licisca (Introduction, Day 6) and the inquest of the woolworker Simona, who is falsely accused of poisoning her lover Pasquino (4.7). It argues that Boccaccio uses these trials to foreground the risks involved when rhetorical categories such as “likely” and “probable” are used to evaluate evidence. These procedural tales are driven by the tension inherent between what everyone knows on the one hand and the singular event on the other, or between normative knowledge and the “novella.” In the trial between the two servants, the judge Dioneo acknowledges that women are not always virgins on their wedding night. He updates the storytellers’ shared picture of the world, making it more realistic. The trial of the woolworker Simona suggests how an art of the probable might incorporate singular phenomena. Yet certain details always remain outside the frame.
First published in 1973, this influential work discusses Einstein's General Theory of Relativity to show how two of its predictions arise: first, that the ultimate fate of many massive stars is to undergo gravitational collapse to form 'black holes'; and second, that there was a singularity in the past at the beginning of the universe. Starting with a precise formulation of the theory, including the necessary differential geometry, the authors discuss the significance of space-time curvature and examine the properties of a number of exact solutions of Einstein's field equations. They develop the theory of the causal structure of a general space-time, and use it to prove a number of theorems establishing the inevitability of singularities under certain conditions. A Foreword contributed by Abhay Ashtekar and a new Preface from George Ellis help put the volume into context of the developments in the field over the past fifty years.
Adaptation by
Adrian Evans, Monash University, Victoria,Richard Wu, The University of Hong Kong,Shenjian Xu, China University of Political Science and Law, Beijing
Technical challenges for lawyers impact on our ethics. Some predict that singularity technologies will progressively merge human and machine intelligences. These may become evident in knowledge processing and therefore affect litigation, with potential for such merged intelligences to minimize moral accountability. Perhaps machine intelligences will progressively calculate which actions are ‘better’ in rigid consequentialist terms, ignoring competing moral frameworks described in this book, and government authority will be challenged. Speculation, of course, but there is unlikely to be a lessening in the need for moral leadership from law school deans, bar association presidents and leading practitioners, as Greater China strives for overall sustainability. Arguably, with our lawyers’ sensitivity to virtue and Confucian teaching we might conclude that narrow role morality is no longer enough. Our final social utility (and the reason for any social and economic privileges we retain as lawyers) may lie in our willingness to help whole communities access practical justice: that is, genuine equality of access to health, food, housing and education.
This essay focuses on Nellie Campobello and Juan Rulfo to study how the Mexican Revolution by midcentury produced a singular aesthetic form in the guise of the unique short story or narrative sketch. This process involves a violent segmentation of the common, together with a no less forceful production of the singular. While Campobello and Rulfo tap into the resources of collective storytelling, they subject these oral materials to a process of aestheticization whose fundamental values lay in an image of self-standing beauty, or singularity, rather than community. Literature, even when its topic is the aftermath of the revolution, thus seems to run counter to the latter's ideals of collectivization. The chain of oral storytellers is typically interrupted with the appropriation of orality on behalf of an individual author with a unique signature. Based on the examples of Campobello and Rulfo, we might even ask whether there ever was such a thing as a novel of the Mexican revolution to begin with: not only because their sketches and short stories hardly can be considered novels but also because theirs amounts to a narrative of the counter-revolution.
This essay focuses on Nellie Campobello and Juan Rulfo to study how the Mexican Revolution by midcentury produced a singular aesthetic form in the guise of the unique short story or narrative sketch. This process involves a violent segmentation of the common, together with a no less forceful production of the singular. While Campobello and Rulfo tap into the resources of collective storytelling, they subject these oral materials to a process of aestheticization whose fundamental values lay in an image of self-standing beauty, or singularity, rather than community. Literature, even when its topic is the aftermath of the revolution, thus seems to run counter to the latter's ideals of collectivization. The chain of oral storytellers is typically interrupted with the appropriation of orality on behalf of an individual author with a unique signature. Based on the examples of Campobello and Rulfo, we might even ask whether there ever was such a thing as a novel of the Mexican revolution to begin with: not only because their sketches and short stories hardly can be considered novels but also because theirs amounts to a narrative of the counter-revolution.
In this chapter, I set out Merleau-Ponty’s critique of intellectualism, which understands perception proper in terms of the top–down imposition of scientific and proto-scientific concepts on our sensory deliverances by way of judgements. Intellectualism begins with Descartes and is refined in parts of the B edition of Kants First Critique. The scientistic reading of Kant is propounded most notably by Léon Brunschvicg, one of Merleau-Ponty’s early teachers. I outline Merleau-Ponty’s critique, to the effect that intellectualism neglects pre-conceptual perception, motivated attention and action and our early and exploratory acts of learning. It also neglects the singularity of empirical things and of the somatically and cognitively constituting subject. I go on to show how Merleau-Ponty takes up ideas from Kant that are not tied to intellectualist suppositions, including the synoptic synthesis of apprehension, the schemas for pure and empirical concepts, orientation in space, the feeling of perceiving and the productive imagination.
An oriented graph is called singular or nonsingular according as its adjacency matrix is singular or nonsingular. In this note, by a new approach, we determine the singularity of oriented quasi-trees. The main results of Chen et al. [‘Singularity of oriented graphs from several classes’, Bull. Aust. Math. Soc.102(1) (2020), 7–14] follow as corollaries. Furthermore, we give a necessary condition for an oriented bipartite graph to be nonsingular. By applying this condition, we characterise nonsingular oriented bipartite graphs
$B_{m,n}$
when
$\min \{m,n\}\leq 3$
.
A classic hand-eye system involves hand-eye calibration and robot-world and hand-eye calibration. Insofar as hand-eye calibration can solve only hand-eye transformation, this study aims to determine the robot-world and hand-eye transformations simultaneously based on the robot-world and hand-eye equation. According to whether the rotation part and the translation part of the equation are decoupled, the methods can be divided into separable solutions and simultaneous solutions. The separable solutions solve the rotation part before solving the translation part, so the estimated errors of the rotation will be transferred to the translation. In this study, a method was proposed for calculation with rotation and translation coupling; a closed-form solution based on Kronecker product and an iterative solution based on the Gauss–Newton algorithm were involved. The feasibility was further tested using simulated data and real data, and the superiority was verified by comparison with the results obtained by the available method. Finally, we improved a method that can solve the singularity problem caused by the parameterization of the rotation matrix, which can be widely used in the robot-world and hand-eye calibration. The results show that the prediction errors of rotation and translation based on the proposed method be reduced to
$0.26^\circ$
and
$1.67$
mm, respectively.
Context, plot, character and theme have dominated modern critical understandings of Wilkie Collins’s fiction, and there are relatively few discussions of his idiom, tone or voice. Collins himself seems to have encouraged this approach to his work, and repeatedly downgraded the question of literary style. But the topic takes us to the heart of his work, and helps us both to understand the nature and quality of his achievement and to see the relationship within it between questions of language and signification and those of identity and the sense of self. Collins is fascinated in many of his fictions by what it means to have a troubled, false or non-existent identity, to have bodies and sensations that are not properly one’s own; the most revelatory texts and inscriptions in his work are often anonymous or unstylised. This chapter is about how Collins’s work explores and exposes the vulnerability of style, as it stages style’s appearances and disappearances.
The previous chapter argued that intuition allows us to indeterminately represent a continuous manifold of space. On the other hand, this possibility appears to be inconsistent with Kant’s characterization of intuitions. He contrasts them to concepts by stating that the former are singular and immediate representations. Singularity seems to commit Kant to the view that, by its nature, intuition must represent an individual object, and many have understood him in this way. That would directly contradict the previous chapter. Chapter 5 addresses this problem. It argues against a quick solution to this problem and for a deeper account. Examining the generality of concepts suggests a distinction between representing and represented, and the singularity of intuition is explained as a mode of representing singularly. The chapter argues that representing singularly is compatible with the indeterminate representation of a continuous manifold; moreover, it is what makes possible the cognition of singulars in intuition. This new reading of the singularity of intuition solves the extensive magnitude regress and also has important implications for understanding mathematical cognition as well as the current Kantian nonconceptualist debate. It also allows us to give a clear account of Kant’s views of concreteness and abstractness.