We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An ordered structure is o-minimal if every definable subset is the union of finitely many points and open intervals. A theory is o-minimal if all its models are ominimal. All theories considered will be o-minimal. A theory is said to be n-ary if every formula is equivalent to a Boolean combination of formulas in n free variables. (A 2-ary theory is called binary.) We prove that if a theory is not binary then it is not rc-ary for any n. We also characterize the binary theories which have a Dedekind complete model and those whose underlying set order is dense. In [5], it is shown that if T is a binary theory, is a Dedekind complete model of T, and I is an interval in , then for all cardinals K there is a Dedekind complete elementary extension of , so that . In contrast, we show that if T is not binary and is a Dedekind complete model of T, then there is an interval I in so that if is a Dedekind complete elementary extension of .
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.