We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Motion planning for high-DOF multi-arm systems operating in complex environments remains a challenging problem, with many motion planning algorithms requiring evaluation of the minimum collision distance and its derivative. Because of the computational complexity of calculating the collision distance, recent methods have attempted to leverage data-driven machine learning methods to learn the collision distance. Because of the significant training dataset requirements for high-DOF robots, existing kernel-based methods, which require $O(N^2)$ memory and computation resources, where $N$ denotes the number of dataset points, often perform poorly. This paper proposes a new active learning method for learning the collision distance function that overcomes the limitations of existing methods: (i) the size of the training dataset remains fixed, with the dataset containing more points near the collision boundary as learning proceeds, and (ii) calculating collision distances in the higher-dimensional link $SE(3)^n$ configuration space – here $n$ denotes the number of links – leads to more accurate and robust collision distance function learning. Performance evaluations with high-DOF multi-arm robot systems demonstrate the advantages of the proposed active learning-based strategy vis-$\grave{\text{a}}$-vis existing learning-based methods.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.